EXERCISE #31

CONCOLIC EXECUTION REVIEW
Write your name and answer the following on a piece of paper

What is the benefit of concolic execution over symbolic execution? How does it
compare in terms of soundness / completeness of vulnerability finding?

Quiz 3 is on Friday

ADMINISTRIVIA
AND
ANNOUNCEMENTS

BOOLEAN
SATISFIABILITY

EECS 677: Software Security Evaluation

Drew Davidson

WHERE WE’RE AT

TOOLS / TECHNIQUES UNDERLYING
SYMBOLIC EXECUTION

REVIOUSLY: ENHANCING SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

GENERATING TEST CASES

PRIORITIZING STATES IN THE SYMBOLIC
EXECUTION TREE

PRUNING DUPLICATE STATES

CONCRETIZING (SOME) INPUT TO MAKE
PROGRESS

THIS TIME: SATISFIABILITY

OUTLINE / OVERVIEW

THE MAGIC THAT MADE SYMBOLIC
EXECUTION WORK WAS THE SOLVER

SATISFACTION

Determines if a path constraint is feasible

Induces a test case that satisfies the path
constraint

Allows for consistent concretization

BOOLEAN SATISFIABILITY

SAT AND SMT

AT THE ROOT OF THE SOLVER IS A MECHANISM N oL
FOR SOLVING A HARD PROBLEM:

Given a Boolean expression, provide a satisfying

assignment to its variables or indicate no such assignment .
is possible The search for a solution

requires a lot of computation

Constant time

Linear time

B/\A<~/~ B:'l' A" nlogntime

S Search scales rapidly with
£olynom|al time

Bva <~ B-0 A=)) the size of the problem
c) A=g Exponential time
g= | A=)

—-ANA <o }Ig Se lb\""\b\,\

NP

SAT AND SMT

THE CLASS OF PROBLEMS WHERE...

A solution can be generated in polynomial time by a
nondeterministic Turing machine

A solution can be verified in polynomial time by a
deterministic Turing machine

NP-COMPLETENESS

SAT AND SMT

THE CLASS OF PROBLEMS WHERE...

A solution could be used as a solver for any problem in NP
W o‘f-[-\.‘t*\)‘)'
The “herelast problems in NP”

SAT is the canonical example of an NP-Complete problem

NP-Complete

P=NP
= NP-Complete

Complexity

THE MARVEL OF ENGINEERING

SAT AND SMT

NP REDUCTIONS ONCE WERE USED TO TO SHOW THAT A PROBLEM WAS
DIFFICULT, NOW THEY ARE USED TO SHOW THAT A PROBLEM IS DO-ABLE

10

HOW DO SAT SOLVERS WORK?

SAT AND SMT

NAIVE SOLUTION: EXPONENTIAL TIME 2N

(@)A(bVc)A(-aVcVd)A(-cVd)A(-cV-dV -a)A(bVd)

CONJUNCTIVE NORMAL FORM

SAT AND SMT

A CONVENIENT REPRESENTATION FOR A BOOLEAN EXPRESSION

Any Boolean expression can be represented as a conjunction of disjunctions using the
standard Boolean transformations

~(PV Q) &= -P A -Q (/\

-(PAQ) &= -PV -Q AV 4 N.. ~
--P&=> P A)
(PA(QVR) &= ((PAQ)V (PAR))

(PV(QAR)) = ((PVQ)A(PVR))

p

% UNIT PROPAGAION

UNIT PROPAGATION
a,-"'}"‘ic
b = '}""\LQ
/\ (bve)A(-aVcVd)A(-cVd)A(-cV-=dV -a)A(bVd)

a literal that exists all alone in a clause is a unit {v
C{\u“"

oot 7 (Lv)A Cwuvul) (~ev A) A (v d Rl

t‘\"t \;\.;e/qk((\OVL)ACC\rA‘) C-l C\/‘A) C e\r‘lot) (L A)
lintd by ™7 Crd) « (e d)r Gevad)
C b d o~ oo d

PURE LITERAL ELIMINATION

SAT AND SMT

nrrnropacaren (e lthe| ellniadi g

(@)A(bVc)A(-aVcVd)A(-cVd)A(-cV-dV -a)A(bVd)

a literal that occurs only positively, or only negatively, in a formula is pure

14

DPLL

SAT AND SMT

(@A(bVc)A(-aVecVd)A(-cVd)A(-cV-dV-a)A(bVd)

function DPLL(¢p)
if ¢ = true then
return true

end if
if ¢ contains a false clause then %
return false

end if
for all unit clauses | in ¢ do
@ < UNIT-PROPAGATE(l, o)
end for
for all literals | occurring pure in ¢ do
@ <« PURE-LITERAL-ASSIGN(, o)
end for
| «— CHOOSE-LITERAL(¢p)
return DPLL(¢p A1) V DPLL(p A =I)
end function

NO MAGIC

BULLET

OUTLINE / OVERVIEW

WE KNOW SOME CONSTRAINTS ARE
COMPUTATIONALLY HARD TO UNPACK

int main(){
char s[80];
scanf(“%s”, s);
if (sha256sum(s) == c01b39c7a35ccc3b081a3e83d2c7

}

a767ebfeb45c6

16

17

NO MAGIC BULLET

OUTLINE / OVERVIEW

WE KNOW SOME CONSTRAINTS ARE
COMPUTATIONALLY HARD TO UNPACK

int main () {
char s[80];
scanf (“%s”, s);
1if (sha256sum(s) == c01lb39c7a3bccc3b08la3e83d2c71fa%a767ebfebd5c69£08el7dfe3ef375a7b) {
return 1 / 0;

A0t Ay)

FROM SAT TO SMT

OUTLINE / OVERVIEW

NEXT TIME...
Symbolic execution requires path constraints far more complex than Boolean

expressions.
Although a naive reduction is somewhat straightforward, naivety does not gel well
with NP-completeness

	Slide 1: Exercise #31
	Slide 2: Administrivia and Announcements
	Slide 3: Boolean Satisfiability
	Slide 4: Where We’re At
	Slide 5: Previously: Enhancing Symbolic Execution
	Slide 6: This Time: Satisfiability
	Slide 7: Boolean Satisfiability
	Slide 8: NP
	Slide 9: NP-Completeness
	Slide 10: The marvel of engineering
	Slide 11: How do sat Solvers work?
	Slide 12: Conjunctive Normal FOrm
	Slide 13: Unit Propagaion
	Slide 14: Pure literal Elimination
	Slide 15: DPLL
	Slide 16: No Magic Bullet
	Slide 17: No Magic Bullet
	Slide 18: From SAT to SMT

