
EXERCISE #6

1

DATAFLOW REVIEW

Write your name and answer the following on a piece of paper

• Show the control-flow graph of the following function and indicate the value-sets at

the beginning and end of each basic block according to the method discussed in

class

y = 0;

if (g) {

 x = 1;

 x += y;

} else {

 x = 3;

 if (g2) {

 x = y;

 }

 x = 4;

}

z = x;

ADMINISTRIVIA
AND
ANNOUNCEMENTS

DATAFLOW FIXPOINTS
EECS 677: Software Security Evaluation

Drew Davidson

CLASS PROGRESS

EXPLORING A FORM OF STATIC ANALYSIS
THAT SUMMARIZES HOW CONTROL AND
DATA FLOWS ACROSS A PROGRAM

- MANIFEST A COMPLETE ANALYSIS BY
DENOTING SETS OF ALL VALUES
MEMORY MIGHT CONTAIN (NB – THIS
WILL END UP BEING CUMBERSOME!)

4

LAST TIME: CONTROL-FLOW GRAPHS
5

REVIEW: STATIC ANALYSIS

SET RULES FOR PARTITIONING FUNCTIONS INTO
BASIC BLOCKS

- Leader instructions

- Terminator instructions

CONNECTED THE BASIC BLOCKS INTO A
CONTROL-FLOW GRAPH

- Edges indicate control flow transfers

EXPLORED THE “BIG IDEA” OF DATAFLOW
ANLAYSIS

- Treat each instruction as a transfer function

- Compose transfer functions to model blocks

data flow

- Merge block effects to get function’s data flow

Building something bigger out of basic blocks

LAST TIME: FLOW SENSITIVE VALUE SETS
6

REVIEW: DATAFLOW

ACCOUNT FOR PROGRAM FLOW, NOT PATHS

- Necessarily Over-approximating states

LET’S DO AN EXAMPLE

1. int x = 0;

2. int y = 0;

3. if (g == true){

4. x = 10;

5. }

6. if (g == false){

7. y = 1 / (x – 10);

8. }

9. return;

LOOPS ARE TOUGH TO HANDLE!
7

REVIEW: DATAFLOW ANALYSIS

ISSUES WITH LOOPS

- Generate lots of paths

- Cyclic data dependency

LECTURE OUTLINE

• Breaking cyclic

dependency

• Termination

• Handling large value sets

WHERE TO START ANALYSIS?
9

BREAKING CYCLIC DEPENDENCY

1. int x = 0;

2. int y = 2;

3. while (INPUT){

4. x = 1 / y;

5. y = 0;

6. }

7. return;

1. int x = 0;

2. int y = 2;

4. x = 1 / y;

5. y = 0;

6. }

3. while (INPUT){

7. return;

true

false

CHAOTIC ITERATION
10

STATIC ANALYSIS: CONTROL FLOW GRAPHS

Chaotic

Iteration

Surprisingly, not a band with merch at Hot Topic

A WORKLIST ALGORITHM

- Select the next worklist item in any order

- Necessarily assumes progress towards

some goal

WHERE TO START ANALYSIS?
11

STATIC ANALYSIS: CONTROL FLOW GRAPHS

1. int x = 0;

2. int y = 2;

4. x = 1 / y;

5. y = 0;

6. }

3. while (INPUT){

7. return;

true

false

LECTURE OUTLINE

• Breaking cyclic

dependency

• Termination

• Handling large value sets

WHERE TO STOP ANALYSIS?
13

STATIC ANALYSIS: CONTROL FLOW GRAPHS

1. int x = 0;

2. int y = 2;

4. x = 1 / y;

5. y = 0;

6. }

7. return;

true

false

3. while (INPUT){

ANALYSIS PROGRESS
14

STATIC ANALYSIS: CONTROL FLOW GRAPHS

ANALYSIS ENDS WHEN THE FACT SETS REACH
SATURATION

- No additional elements will ever be

added

- It sure would be nice if we could

guarantee that this will happen!

When your fact sets couldn’t

possibly hold any more data

FIXED-POINTS
15

STATIC ANALYSIS: CONTROL FLOW GRAPHS

A FIXED-POINT (AKA FIXPOINT, FIXED POINT)

- A value that does not change under a given transformation

OUR VALUE-SET ANALYSIS WILL HAVE FACTS
THAT REACH A FIXED-POINT

Why?

- Finite set of configurations over INT32s

- Data transforms only add data to fact sets

LECTURE OUTLINE

• Breaking cyclic

dependency

• Termination

• Handling large value sets

WHERE TO STOP THIS ANALYSIS?
17

ANALYSIS TERMINATION

1. int x = 0;

2. int y = 2;

4. x = x++;

5. y = 0;

6. }

7. return y / x;

true

false

3. while (INPUT){

WIDENING
18

ANALYSIS TERMINATION

ACCELERATE PROGRESS TOWARDS FIX-POINT

- Lots of (over-approximate) ways to do this

- 1 simple idea: if we hit N values, immediately change the

fact set to “All integers”

1. int x = 0;

2. int y = 2;

4. x = x++;

5. y = 0;

6. }

7. return y / x;

true

false

3. while (INPUT){

LECTURE END!

19

DESCRIBED SOME OF THE ISSUES AND FIXES
FOR DATAFLOW IN THE PRESENCE OF LOOPS

	Slide 1: ExerCise #6
	Slide 2: Administrivia and Announcements
	Slide 3: DataFlow Fixpoints
	Slide 4: Class Progress
	Slide 5: Last Time: Control-Flow Graphs
	Slide 6: Last Time: Flow Sensitive Value Sets
	Slide 7: Loops Are Tough to Handle!
	Slide 8: Lecture Outline
	Slide 9: where to Start Analysis?
	Slide 10: Chaotic Iteration
	Slide 11: where to Start Analysis?
	Slide 12: Lecture Outline
	Slide 13: where to StOP Analysis?
	Slide 14: Analysis Progress
	Slide 15: FixED-Points
	Slide 16: Lecture Outline
	Slide 17: where to StOP THIS Analysis?
	Slide 18: Widening
	Slide 19: Lecture END!

