
EXERCISE #33

1

BOOLEAN SATISFIABILITY REVIEW

Write your name and answer the following on a piece of paper

Use the Nelson-Oppen procedure to separate theories in the following formula

𝑎 − 𝑓 𝑏 + 𝑐 = 3 ∧ 𝑎 − 1 = 0 ∧ 𝑏 > 10

ADMINISTRIVIA
AND
ANNOUNCEMENTS

PRINCIPLES OF SECURE
ENGINEERING
EECS 677: Software Security Evaluation

Drew Davidson

WHERE WE’RE AT

FINISHED UP DYNAMIC ANALYSIS

GRAB-BAG TIME!

4

5

PREVIOUSLY: SMT SOLVING
REVIEW LAST LECTURE

SATISFIABILITY BEYOND SIMPLE BOOLEAN
EXPRESSIONS

Gets us (closer) to the real programs that we want to

analyze

KEY PRINCIPLES

Individual theory solvers

Formulating constraints modularize a concern to a theory

6

THIS LECTURE
SMT SOLVING

BEST PRACTICES

7

SECURE DESIGN
PRINCIPLES OF SECURE SOFTWARE DEVELOPMENT

SECURITY IS RELATIVE

Obviously (from our previous study) it is relative to a

threat model

Less obviously (from our topics) is that it should be

conceptualized in terms of improvements

MINDSETS

Convince yourself that the system is secure

Convince yourself that you are identifying and fixing

weaknesses of the system

8

SECURITY PRINCIPLES
PRINCIPLES OF SECURE SOFTWARE DEVELOPMENT

SIMPLICITY

OPEN DESIGN

MAINTAINABILITY

PRIVILEGE SEPARATION / LEAST
PRIVILEDGE

DEFENSE IN DEPTH / DIVERSITY

COMPLETE MEDIATION AND FAIL-SAFE

9

THE PRINCIPLE OF LEAST PRIVILEGE
PRINCIPLES OF SECURE SOFTWARE DEVELOPMENT

“ENTITIES SHOULD ONLY HAVE ACCESS TO THE DATA AND

RESOURCES NEEDED TO PROVIDE AUTHORIZED TASKS”

At what granularity do we consider an entity?

10

PRIVILEGE SEPARATION
PRINCIPLES OF SECURE SOFTWARE DEVELOPMENT

Break system into compartments
 Ensure each compartment is isolated
 Ensure each compartment runs with least privilege
 Treat compartment interface as trust boundary

11

PRIVILEGE SEPARATION
PRINCIPLES OF SECURE SOFTWARE DEVELOPMENT

EXAMPLE: THE OPERATING SYSTEM

 Process should not be able to access another process’s
memory

Users can execute programs/processes
Processes can access resources

UNIX ACLS

Permissions to access files are granted based on user IDs
 Every user has a unique UID
 Access Operations: Read, Write, Execute
 Each le has an access control list (ACL)
 Grants permissions to users based on UIDs and roles
(owner, group, other)
 root (UID 0) can access everything

MEMORY ISOLATION

Process should only be able to access certain resources

RESOURCE ISOLATION

12

ESTABLISH THE TRUSTED COMPUTING BASE
PRINCIPLES OF SECURE SOFTWARE DEVELOPMENT

Trusted != secure

WHAT ARE THE SECURITY ASSUMPTIONS ABOUT THE CODE BASE?

What are the components critical for security?

RELATED CONCERN: MINIMIZING ATTACK SURFACE

Adversaries can only attack what’s there

13

SIMPLICITY
PRINCIPLES OF SECURE SOFTWARE DEVELOPMENT

We have to trust some components of our system.
In general keeping the Trusted Computing Base small and
simple makes it easier to verify.
 In theory a hypervisor can be less complex than a full
host operating system.
 A small OS kernel has less attack surface than one with
many features.

Consider the ease of analysis!

14

FAIL-OPEN VS FAIL-CLOSED
PRINCIPLES OF SECURE SOFTWARE DEVELOPMENT

FAIL-OPEN

Allow anybody access

WHAT DO YOU DO IF YOUR SECURITY MECHANISM BREAKS
DOWN?

FAIL-CLOSED
Allow nobody access

15

MAINTAINABILITY
PRINCIPLES OF SECURE SOFTWARE DEVELOPMENT

DEVELOP GOOD LOGGING / REPORTING

Ensure the state of the system is easy to ascertain

ASSUME EXTENSIONS TO THE SYSTEM MAY EXPOSE INTERNAL FUNCTIONALITY

- Proactive sanity checking / data sanitization

16

COMPLETE MEDIATION
PRINCIPLES OF SECURE SOFTWARE DEVELOPMENT

EVERY ACCESS REQUEST SHOULD BE SUBJECT TO THE SAME AUTHORIZATION

Subsequent requests should re-check rights regardless of the success of the first check

Simple way to ensure that updates to state do open a security hole

17

OPEN DESIGN
PRINCIPLES OF SECURE SOFTWARE DEVELOPMENT

THE SECURITY OF THE SYSTEM SHOULD NOT DEPEND ON AN ADVERSARY’S
KNOWLEDGE OF THE SYSTEM

Over-approximate adversarial capabilities

Review of the design should not be considered a security incident

Does not (for better or worse) preclude secret implementation

18

PSYCHOLOGICAL ACCEPTABILITY
PRINCIPLES OF SECURE SOFTWARE DEVELOPMENT

EASE OF USE AND TRANSPARENCY ARE ESSENTIAL REQUIREMENTS FOR SECURITY

19

MFA FATIGUE ATTACKS
PRINCIPLES OF SECURE SOFTWARE DEVELOPMENT

EXAMPLE: 2022 UBER ATTACK BY LAPSUS$

20

DEFENSE IN DEPTH
PRINCIPLES OF SECURE SOFTWARE DEVELOPMENT

21

WRAP-UP
SMT SOLVERS

KEEP SECURE DEVELOPMENT IN MIND!

The principles serve as guides and goals to aspire to

	Slide 1: Exercise #33
	Slide 2: Administrivia and Announcements
	Slide 3: Principles of Secure Engineering
	Slide 4: Where We’re At
	Slide 5: Previously: SMT Solving
	Slide 6: This lecture
	Slide 7: Secure Design
	Slide 8: Security Principles
	Slide 9: The Principle of least privilege
	Slide 10: Privilege Separation
	Slide 11: Privilege Separation
	Slide 12: Establish the Trusted Computing Base
	Slide 13: Simplicity
	Slide 14: Fail-Open vs Fail-CloseD
	Slide 15: Maintainability
	Slide 16: Complete Mediation
	Slide 17: Open Design
	Slide 18: Psychological acceptability
	Slide 19: MFA Fatigue Attacks
	Slide 20: Defense in depth
	Slide 21: Wrap-Up

