EXERCISE #14

PRACTICAL INFOFLOW REVIEW

Write your name and answer the following on a piece of paper

Provide an instance of a program with an implicit information flow from a confidential source to a sink

ADMINISTRIVIA AND ANNOUNCEMENTS

CLASS PROGRESS

SHOWING SOME APPLICATIONS OF STATIC DATAFLOW

LAST TIME: DATAFLOW DEPLOYMENT

REVIEW: LAST LECTURE

USING DATAFLOW IN PRACTICAL CONTEXTS

- Ex. - Looking for initialized variables

4

SIDE CHANNELS

EECS 677: Software Security Evaluation

Drew Davidson

OVERVIEW

CONTEMPLATE OTHER WAYS THAT SNEAKY DATA FLOWS CAN OCCUR

LECTURE OUTLINE

- Threat Models
- Side Channels Overview
- Timing
- A dataflow approach

THINKING ABOUT ATTACKS

THERE'S NO SUCH THING AS "ABSOLUTE SECURITY"

 It's always possible to come up with SOME (potentially wacky) scenario where the adversary can subvert a system

CONSIDER THE VARIOUS ATTACK CLASSES

- **Denial of Service:** Availability is compromised
- **Exfiltration:** Confidentiality policy is compromised
- **Compromise:** Integrity policy is compromised

A FRAMEWORK FOR ASSUMPTIONS

9

A THREAT MODEL IS COMPOSED OF:

- Adversary Goals: What is the adversary attempting to do?
- Adversary Capabilities: What resources can the adversary bring to bear to accomplish their goals?

SECURITY MEANS PREVENTING GOALS FROM BEING ACCOMPLISHED, DESPITE CAPABILITIES

Defender Capabilities: What resources MUST be brought to bear to defeat the threat model?

THINKING ABOUT ATTACKS

LECTURE OUTLINE

• Threat Models

Side Channels - Overview

- Timing
- A dataflow approach

THE BASIC IDEA OF SIDE CHANNELS

SIDE CHANNELS

ABSTRACTION IS A KEY PRINCIPLE OF COMPUTER SCIENCE!

As a programmer, you shouldn't need to know underlying details

AS A SECURITY EXPERT, THESE DETAILS MIGHT END UP BEING IMPORTANT!

The way a program accomplishes its tasks are important, especially from a security aspect

- How long does it take for the program to do X ?
- How hot does it make the processor when X happens?
- How much power does it draw when X happens?

SIDE CHANNELS – THE BIG IDEA

SIDE CHANNELS - INSTANCES

Computation may have effects outside of program semantics

Some operations (internally) take longer based on aspects of the data

TEMPEST SIDE CHANNELS – HISTORY

ELECTROMAGNETIC LEAKAGE OF KEYS

- WWII: Bell Telephone discovers electromagnetic leakage in one-time pad teleprinters, detectable at 100-ft radius
- 1951: CIA rediscovers leakage, detectable at 200-ft radius
- **1964:** TEMPEST shielding protocol established

TEMPEST SIDE CHANNELS – HISTORY

ELECTROMAGNETIC LEAKAGE OF KEYS

- WWII: Bell Telephone discovers electromagnetic leakage in one-time pad teleprinters, detectable at 100-ft radius
- 1951: CIA rediscovers leakage, detectable at 200-ft radius
- **1964:** TEMPEST shielding protocol established

VAN ECK PHREAKING SIDE CHANNELS - HISTORY

Electromagnetic Leakage of Monitors

- Pick up the monitor's electromagnetic emanations that differ depending on how the screen lights up
- Originally determined for CRT (1985), also discovered for LCD monitors (2004)

The quick brown for jumps over the lazy dag It is well known that electronic equipment produces electronsametic fields	-	22
which may cause interference to radio and television reception. The phenomena underlying this have been thoroughly studied over the past few decades. These studies have resulted in internationally agreed wethods for measuring		
the interference produced by equipment. These are needed because the maximum interference levels which equipment may generate have been laid down by law in most countries.		20
However, interference is not the only problem caused by electromagnetic radiation. It is possible in some cases to obtain information on the signals used inside the equipment when the radiation is picked up and the received	-	18
ssignals are decoded. Especially in the case of digital equipment this possibility constitutes a problem, because remote reconstruction of signals inside the equipment may enable reconstruction of the data the equipment is processing.		16 <u></u>
This problem is not a new one: defence specialists have been aware of it for over twenty years. Information on the way in which this kind of "envestropping" can be prevented is not freely available. Equipment designed to protect militery information will probably be three or four times more expensive than the equipment likely to be used for processing of non-military		14
Information. Excerpt From Wim van Eck: Electromognetic Radiation from Video Display Hetts: On Excerptionsing Disk? Computers & Security 4 (1985) 269-285 (-	12
<pre>I"#fil'O*+,/0123456789+;<=>?00BCDEFGKLUKLMNOF9RSTUV9XYZEV1'i abodefghigklmnapgrstuvwxyz{17"!"#fil'#fil'O*+,./0123456789-;<=>?i 04BCDEFGHLUKLMNOF0RSTUVXXYZEV1'abodefghigklmnapgrstuvwxgz[17"! sneck.txt lines 1=26/26 (END)</pre>		10
A STATE OF A		

Fig. 3. Text signal received from a 440CDX laptop at 10 m distance through two intermediate offices (3 plasterboard walls).

SIDE CHANNELS – PARTIAL CREDIT

SIDE CHANNELS - INSTANCES

EVEN "HINTS" ABOUT SECRET DATA CAN BE PROBLEMATIC

Assume you're trying to guess a password

- knowing even 1 character massively reduces the search space
- knowing the length of the password reduces the search space

Sometimes a Program <u>Wants</u> to Leak data

Exfiltration !

LECTURE OUTLINE

- Threat Models
- Side Channels Overview
- Timing
- A dataflow approach

TIMING SIDE CHANNELS SIDE CHANNELS - INSTANCES

Some computations take longer than others

Some operations (internally) take longer based on aspects of the data

```
bool checkPW(const char * given){
  const char * expected = "12345";
  int len = min(5, strlen(given));
  for (int i = 0; i < len, i++){
    if (given[i] != expected[i]){
      return false;
    }
  }
  return true;
}</pre>
```

TIMING SIDE CHANNELS SIDE CHANNELS - INSTANCES

Some computations take longer than others

Some operations (internally) take longer based on aspects of the data

THREAT MODEL

Interactive, low-latency*, black-box access to the program, precise timer

*: May be overcome with more samples

TIMING SIDE CHANNELS - FIX

SIDE CHANNELS - INSTANCES

```
bool ok = true;
bool checkPW(const char * given) {
                                             bool checkPW(const char * given) {
  const char * expected = "12345";
                                               const char * expected = "12345";
  int len = min(5, strlen(given));
                                               int len = min(5, strlen(given));
                                               for (int i = 0; i < len, i++) {</pre>
  for (int i = 0; i < len, i++) {
    if (given[i] != expected[i]) {
                                                 if (given[i] != expected[i]) {
                                                   return false; ok = false;
      return false;
                                                          ok
  return true;
                                               return <del>true;</del>
```

TIMING SIDE CHANNELS - FIX

SIDE CHANNELS - INSTANCES

LIMITATIONS OF UNIFORM EXECUTION

- Necessarily slow down your computation to the worst case
- May require some pretty precise understanding of timing
- May not always be obvious what the worst-case even is

LECTURE OUTLINE

- Threat Models
- Side Channels Overview
- Instances
- A dataflow approach

TIMING SIDE CHANNELS - FIX

SIDE CHANNELS - INSTANCES

CAN WE FIX THIS ISSUE WITH OUR DATAFLOW APPROACH?

- Instruction transformers: how much time that instruction takes
- Block composition: the sum total of instruction times
- Merge operation: some sort of check that all paths are of comparable time?

WRAP-UP

