
EXERCISE #22
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DEPENDENCE GRAPH REVIEW

Write your name and answer the following on a piece of paper

Draw the Control Dependence Graph for the following program



ADMINISTRIVIA
AND 
ANNOUNCEMENTS



PROGRAM SLICING
EECS 677: Software Security Evaluation

Drew Davidson



CLASS PROGRESS

EXPLORING ANALYSES UNDERLYING OUR 
EVALUATION/ENFORCEMENT NEEDS
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Evaluation / Enforcement: IRM, Data Leakage, CFI

Analysis tools: CFGs, Points-to graphs, 

Interprocedural techniques

Scaling: CDGs, PDGs
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LAST TIME: DEPENDENCE GRAPHS
REVIEW: LAST LECTURE

FOCUS THE ANALYSIS ON WHAT WE 
CARE ABOUT

Control Dependence Graph (CDG)

– Shows what program statements depend on 

each other

Program Dependence Graph (PDG)

– A CDG enriched with use/def information



OVERVIEW

WHAT WE CAN DO WITH THE PDG
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THE “SUB-PROGRAM” CONCEPT
PROGRAM SLICING

BIG IDEA: IGNORE “IRRELEVANT” 
FUNCTIONALITY FOR A PARTICULAR CASE

Control Dependence Graph (CDG)

– Shows what program statements depend on 

each other

Program Dependence Graph (PDG)

– At minimum: A CDG enriched with data 

dependence information
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THE SLICE OF THE PROGRAM
PROGRAM SLICING

FORWARD SLICE

Everything influenced by a target statement

BACKWARDS SLICE

Everything that influences a target statement
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SLICE EXECUTION
PROGRAM SLICING

DO WE NEED OUR SLICED SUBPROGRAM TO 
BE EXECUTABLE?

If so, we may need to include additional 

instructions
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OUTPUT DEPENDENCE
PROGRAM SLICING

DO WE NEED OUR SLICED SUBPROGRAM TO 
PERFORM IDENTICALLY TO THE ORIGINAL?

If so, we’ll need additional output dependence 

edges
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SLICING SUMMARY
PROGRAM SLICING

STATIC SLICING HAS SOME PROMISING 
APPLICATIONS

It’s not a one-size-fits-all scalability panacea

Any (sound) slicing is likely a benefit!

SOME APPLICATIONS BEYOND ANALYSIS

Automatic parallelization

Software metrics (how big of a change is this 

refactor?)
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ANALYSIS TOOLS
SWITCHING GEARS

WE’VE COVERED SEVERAL POPULAR 
ANALYSIS TECHNIQUES FOR IMPERATIVE 
PROGRAMMING

Let’s talk a bit about their tooling
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LLVM: OPT
SWITCHING GEARS

THE LLVM OPTIMIZATION MODULE

Can formulate analysis and program 

transformation tasks as “optimization passes”

clang -c -S -emit-llvm factorial.c -o factorial.ll
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LLVM: OPT
SWITCHING GEARS

THE LLVM OPTIMIZATION MODULE

Can formulate analysis and program 

transformation tasks as “optimization passes”

clang -c -S -emit-llvm factorial.c -o fact.ll



15

OPT: CALLGRAPH BUILDING
ANALYSIS TOOLS

opt fact.ll –dot-callgraph
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OPT: CFG BUILDING
ANALYSIS TOOLS

opt fact.ll –dot-cfg-only opt fact.ll –dot-cfg
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OPT: STATIC SLICING
ANALYSIS TOOLS

https://github.com/mchalupa/dg
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MODULE COMPLETE
SWITCHING GEARS
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