
EXERCISE #22

1

DEPENDENCE GRAPH REVIEW

Write your name and answer the following on a piece of paper

Draw the Control Dependence Graph for the following program

ADMINISTRIVIA
AND
ANNOUNCEMENTS

PROGRAM SLICING
EECS 677: Software Security Evaluation

Drew Davidson

CLASS PROGRESS

EXPLORING ANALYSES UNDERLYING OUR
EVALUATION/ENFORCEMENT NEEDS

4

Evaluation / Enforcement: IRM, Data Leakage, CFI

Analysis tools: CFGs, Points-to graphs,

Interprocedural techniques

Scaling: CDGs, PDGs

5

LAST TIME: DEPENDENCE GRAPHS
REVIEW: LAST LECTURE

FOCUS THE ANALYSIS ON WHAT WE
CARE ABOUT

Control Dependence Graph (CDG)

– Shows what program statements depend on

each other

Program Dependence Graph (PDG)

– A CDG enriched with use/def information

OVERVIEW

WHAT WE CAN DO WITH THE PDG

6

7

THE “SUB-PROGRAM” CONCEPT
PROGRAM SLICING

BIG IDEA: IGNORE “IRRELEVANT”
FUNCTIONALITY FOR A PARTICULAR CASE

Control Dependence Graph (CDG)

– Shows what program statements depend on

each other

Program Dependence Graph (PDG)

– At minimum: A CDG enriched with data

dependence information

8

THE SLICE OF THE PROGRAM
PROGRAM SLICING

FORWARD SLICE

Everything influenced by a target statement

BACKWARDS SLICE

Everything that influences a target statement

9

SLICE EXECUTION
PROGRAM SLICING

DO WE NEED OUR SLICED SUBPROGRAM TO
BE EXECUTABLE?

If so, we may need to include additional

instructions

10

OUTPUT DEPENDENCE
PROGRAM SLICING

DO WE NEED OUR SLICED SUBPROGRAM TO
PERFORM IDENTICALLY TO THE ORIGINAL?

If so, we’ll need additional output dependence

edges

11

SLICING SUMMARY
PROGRAM SLICING

STATIC SLICING HAS SOME PROMISING
APPLICATIONS

It’s not a one-size-fits-all scalability panacea

Any (sound) slicing is likely a benefit!

SOME APPLICATIONS BEYOND ANALYSIS

Automatic parallelization

Software metrics (how big of a change is this

refactor?)

12

ANALYSIS TOOLS
SWITCHING GEARS

WE’VE COVERED SEVERAL POPULAR
ANALYSIS TECHNIQUES FOR IMPERATIVE
PROGRAMMING

Let’s talk a bit about their tooling

13

LLVM: OPT
SWITCHING GEARS

THE LLVM OPTIMIZATION MODULE

Can formulate analysis and program

transformation tasks as “optimization passes”

clang -c -S -emit-llvm factorial.c -o factorial.ll

14

LLVM: OPT
SWITCHING GEARS

THE LLVM OPTIMIZATION MODULE

Can formulate analysis and program

transformation tasks as “optimization passes”

clang -c -S -emit-llvm factorial.c -o fact.ll

15

OPT: CALLGRAPH BUILDING
ANALYSIS TOOLS

opt fact.ll –dot-callgraph

16

OPT: CFG BUILDING
ANALYSIS TOOLS

opt fact.ll –dot-cfg-only opt fact.ll –dot-cfg

17

OPT: STATIC SLICING
ANALYSIS TOOLS

https://github.com/mchalupa/dg

18

MODULE COMPLETE
SWITCHING GEARS

	Slide 1: Exercise #22
	Slide 2: Administrivia and Announcements
	Slide 3: Program Slicing
	Slide 4: Class Progress
	Slide 5: Last Time: Dependence Graphs
	Slide 6: Overview
	Slide 7: The “SUB-Program” Concept
	Slide 8: The Slice of the Program
	Slide 9: Slice Execution
	Slide 10: Output dependence
	Slide 11: Slicing Summary
	Slide 12: Analysis Tools
	Slide 13: LLVM: Opt
	Slide 14: LLVM: Opt
	Slide 15: Opt: Callgraph building
	Slide 16: Opt: CFG building
	Slide 17: Opt: Static Slicing
	Slide 18: Module complete

