
EXERCISE #32
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BOOLEAN SATISFIABILITY REVIEW

Write your name and answer the following on a piece of paper

Apply the pure literal elimination technique to the following Boolean expression until no 

pure literals remain 

𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐 ∧ ¬𝑏 ∨ ¬𝑐 ∧ ¬𝑑 ∨ ¬𝑐 ∧ ¬𝑑 ∨ ¬𝑏 ∧ 𝑐
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WHERE WE’RE AT

TOOLS / TECHNIQUES UNDERLYING 
SYMBOLIC EXECUTION

4
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PREVIOUSLY : SATISFIABILITY
OUTLINE / OVERVIEW

THE MAGIC THAT MADE SYMBOLIC 
EXECUTION WORK WAS THE SOLVER

A COMPUTATIONALLY HARD PROBLEM

Famously NP-complete (the progenitor of that 

complexity class!) 

Obvious exponential loose upper bound (brute 

force)
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THIS LECTURE
SMT SOLVING

SATISFIABILITY BEYOND SIMPLE BOOLEAN 
EXPRESSIONS

Gets us (closer) to the real programs that we want to 

analyze

KEY PRINCIPLES

Individual theory solvers

Formulating constraints modularize a concern to a theory
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THEORY SOLVERS
SMT SOLVING

SOME EXAMPLE THEORIES

Theory of equality on uninterpreted (mathematical) 

functions

Theory of linear integer arithmetic

Theory of arrays

Theory of strings

Theory of bitvectors

Often possible (+ convenient / necessary)

to abstract away the actual behavior of 

a function
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THEORY SIGNATURES
SMT SOLVING

The set of (non-logical) symbols and their meanings 

defined by that theory

Example: Theory of linear integer arithmetic:

(0,1,+,−,≤) interpreted over ℤ

Once we have a set of signatures, we’ll try to get our 

formula (i.e. path constraint) to separate concerns into 

theories
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SEPARATING CONCERNS
SMT SOLVING

Note: we will only deal with constraints in Quantifier-Free First-Order Logic

Logical symbols 

– Parentheses: (, )

– Propositional connectives: ∨, ∧, ¬, →, ↔

– Variables: v1, v2, . . .

– Quantifiers: ∀, ∃
Non-logical symbols

– Equality: =

– Functions: +, -, %, bit-wise &, f(), concat, …

– Predicates: ·, is_substring, …

– Constant symbols: 0, 1.0, null`

Goal: break down the constraint system to match our core (logical) theory at the top level, 

with individual clauses potentially in our theory signatures
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EXAMPLE
SMT SOLVING

Credit: this example due to Oliveras and Rodriguez-Carbonell, additional work by Aldrich

f (f (x) − f (y)) = a

∧
f (0) = a + 2

∧
x = y
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EXAMPLE
SMT SOLVING

f (f (x) − f (y)) = a

∧
f (0) = a + 2

∧
x = y

Step 1: Nelson-Oppen procedure to separate theories 

f (e1) = a

∧
e1 = f(x) – f(y)

∧
f (0) = a + 2

∧
x = y

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (0) = a + 2

∧
x = y
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EXAMPLE
SMT SOLVING

Step 1: Nelson-Oppen procedure to separate theories 

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (0) = a + 2

∧
x = y

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = a + 2

∧
e4 = 0

∧
x = y

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y
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EXAMPLE
SMT SOLVING

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

Theory of EUF

Theory of EUF

Theory of EUF

Theory of EUF

Theory of integer arithmeticANDTheory of EUF

Theory of integer arithmetic

Theory of integer arithmetic

Theory of integer arithmetic
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3

∧
e2 - e3 = 0
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3

∧
e2 - e3 = 0

∧
e1 = 0
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3

∧
e2 - e3 = 0

∧
e1 = 0

∧
e1 = e4
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3

∧
e2 - e3 = 0

∧
e1 = 0

∧
e1 = e4

∧
f(0) = a
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3

∧
e2 - e3 = 0

∧
e1 = 0

∧
e1 = e4

∧
f(0) = a
∧
f(0) = e5
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3

∧
e2 - e3 = 0

∧
e1 = 0

∧
e1 = e4

∧
f(0) = a
∧
f(0) = e5

∧
e5 = a Arithmetic

Contradiction
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“CONVENIENT” EQUALITIES
SMT SOLVING

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3

∧
e2 - e3 = 0

∧
e1 = 0

∧
e1 = e4

∧
f(0) = a
∧
f(0) = e5

∧
e5 = a

The lynchpin of our success was the existence of some

useful equalities. What if they aren’t in the original 

constraints?

Case split!

Can add logical predicates for all possible equalities…

(e1 = e2 ∨ e1 ≠ e2) 

∧ 

(e2 = e3 ∨ e2 ≠ e3) 

∧ 

(e1 = e3 ∨ e1 ≠ e3) 

∧ 

...

and start making guesses
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“CONVENIENT” EQUALITIES
SMT SOLVING

Linear Solver: contradiction!

x ≥ 0 ∧ y = x + 1 ∧ (y > 2 ∨ y < 1 )

p1 ∧ p2 ∧ (p3 ∨ p4 )

p1:true

p2:true

p3:false

p4: true

DPLL

Abstract all non-logical clauses

Add information and start over

p1 ∧ p2 ∧ (p3 ∨ p4) ∧ (¬p1 ∨ ¬p2 ∨ ¬p3)

The lynchpin of our success was the existence of some

useful equalities. What if they aren’t in the original 

constraints?

Case split!

Can add logical predicates for all possible equalities…

(e1 = e2 ∨ e1 ≠ e2) 

∧ 

(e2 = e3 ∨ e2 ≠ e3) 

∧ 

(e1 = e3 ∨ e1 ≠ e3) 

∧ 

...

and start making guesses
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ARITHMETIC CONSTRAINTS
SMT SOLVING

We kinda danced around how the arithmetic solver works

Basic answer: Linear Algebra. 

Also, something something Linear Optimization and the simplex algorithm
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WRAP-UP
SMT SOLVERS

HOPEFULLY I’VE CONVINCED YOU THAT SOLVERS CAN BE IMPLEMENTED 

Not strictly magic, but they do employ some very clever techniques
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