
EXERCISE #4
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DYNAMIC ANALYSIS REVIEW

Write your name and answer the following on a piece of paper

• Give a function and multiple input sets that collectively exercise 100% branch 

coverage on that function but less than 100% path coverage



STATIC ANALYSIS
EECS 677: Software Security Evaluation

Drew Davidson



ADMINISTRIVIA
AND 
ANNOUNCEMENTS

Quiz dates are now posted

Quiz 1 is NEXT FRIDAY (in class)



LAST TIME: DYNAMIC ANALYSIS
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REVIEW: DYNAMIC ANALYSIS

High-Level Overview of a classic auditing 
technique: testing
• Try the program, see what happens!
• A sound analysis: if you saw it, it happened
• Challenge: exercising all behavior



LECTURE OUTLINE

• Static Analysis

• Control Flow Graph



BEYOND TESTING
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INTRO: STATIC ANALYSIS

What if we didn’t have to “guess” at an input?
• Extract the “rules” of the program
• Examine the effect of the program without providing explicit 

values
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SOME FORMS OF STATIC ANALYSIS
CATEGORIZING ANALYSES

Syntax Analysis

Dataflow Analysis

Model Checking



SYNTAX ANALYSIS
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OVERVIEW: STATIC ANALYSIS

Some troubling behavior of a program may be 
discoverable via simply observing syntactic 
structure
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MODEL CHECKING
OVERVIEW: STATIC ANALYSIS

Extract a (finite) state system that 
approximates the analysis target
Example:
• States: configuration of the system
• Edges: transitions within the system

Check if the system can violate some 
correctness property

Each state indicates the value of a memory bit
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MODEL CHECKING
STATIC ANALYSIS - MODEL CHECKING

State space

(artist’s rendition)

State space explosion!
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(SYMBOLIC) MODEL CHECKING
STATIC ANALYSIS –  MODEL CHECKING

Extract a (finite) state system that 
approximates the analysis target
• States: configurations of the system
• Edges: transitions within the system

Check if the system can violate some 
correctness property

Each state indicates a set of values 

or the truth of some abstract predicate
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CEGAR
STATIC ANALYSIS –  MODEL CHECKING

Counterexample-guided abstraction 
refinement
• Begin with a coarse, over-approximate 

abstraction of the system
• Check system correctness
• If a violation is reported, verify it!

• If its a true positive – report it
• If it’s a false positive – refine the model to exclude it 

and check the new model



DATAFLOW ANALYSIS
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OVERVIEW: STATIC ANALYSIS

Capture the effect of each statement on the 
program’s data
• Compose the statements together to 

determine the aggregate effect of the 
program 
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ANALYSIS SPECIFICITY
STATIC ANALYSIS: DATAFLOW

Flow Sensitive
int f(bool b) {

    Obj * o = null;

    int v = 2;

    if (b) {

        o = new Obj ();

        v = rand_int(); 

    }

    if (v == 2){

        o->setInvalid()

    }

    return o->property(); 

}
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ANALYSIS SPECIFICITY
STATIC ANALYSIS: DATAFLOW

Path Sensitive
int f(bool b) {

    Obj * o = null;

    int v = 2;

    if (b) {

        o = new Obj ();

        v = rand_int(); 

    }

    if (v == 2){

        o->setInvalid()

    }

    return o->property(); 

}



ABSTRACT INTERPRETATION
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CATEGORIZING ANALYSES

(Over)approximate the state of the program
(Over)approximate the domain of values



ABSTRACT INTERPRETATION
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CATEGORIZING ANALYSES

(Over)approximate the state of the program
(Over)approximate the domain of values

Anything that isn’t crystal clear to a static analysis tool probably 
isn’t clear to your fellow programmers, either. The classic 
hacker disdain for “bondage and discipline languages” is short-
sighted – the needs of large, long-lived, multi-programmer 
projects are just different than the quick work you do for 
yourself

- John Carmack



OVERVIEW DONE!
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CATEGORIZING ANALYSES

We’ll cover many of these techniques (and more!)

Next up:
- Start looking at toolsets to build our analyses 
- Looking at the kinds of program flaws that can cause 

problems



LECTURE OUTLINE

• Static Analysis Overveiw

• Control Flow Graphs



CONTROL FLOW GRAPHS
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Program analysis relies heavily on two questions
• (How) can we get to a particular program point?
• What is the program configuration at a given point?

Helpful to structure program instructions as a graph
• Visualize transfer of control
• Avail ourselves of graph analyses (e.g. reachabilty)

STATIC ANALYSIS: CONTROL FLOW GRAPHS
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FLOWCHARTS

NOTATION

NODES ARE INSTRUCTIONS

EDGES GO TO SUCCESSOR 
NODES UNDER APPROPRIATE 
CONDITION

OPERATION

EXECUTE CURRENT 
INSTRUCTION

PROCEED TO THE RIGHT 
SUCCESSOR

STATIC ANALYSIS: CONTROL FLOW GRAPHS



CODE FLOWCHARTS
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a = 7

a < 4

a = 7

a += 2 

a = 7;

if (a < 4){

  a = 7;

} 

a += 2;

source code Instruction Flowgraph

false

true

NOTATION

NODES ARE INSTRUCTIONS

EDGES GO TO SUCCESSOR 
NODES UNDER APPROPRIATE 
CONDITION

OPERATION

EXECUTE CURRENT 
INSTRUCTION

PROCEED TO THE RIGHT 
SUCCESSOR

STATIC ANALYSIS: CONTROL FLOW GRAPHS
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FLOWCHARTS: VISUALIZING CONTROL

if a < b

if a < 10

a = a + b

if b < 3

a = 1

return

void funk(int a, int b){

    if (a < b){

        if (a < 10){

            a = a + b;

         } 

    }

    if (b < 3){

       a = 1;

    }

    return;

}

STATIC ANALYSIS: CONTROL FLOW GRAPHS
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FLOWCHARTS: VISUALIZING CONTROL

if a < b

if a < 10

a = a + b

if b < 3

a = 1

return

void funk(int a, int b){

    if (a < b){

        if (a < 10){

            a = a + b;

         } 

    }

    if (b < 3){

       a = 1;

    }

    return;

}

STATIC ANALYSIS: CONTROL FLOW GRAPHS
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FLOWCHARTS: A USEFUL TOOL

MAYBE THIS IS HOW YOU LEARNED TO 
THINK ABOUT CODE!

IT’S A NICE WAY TO VISUALIZE THE 
CONTROL FLOW  OF THE PROGRAM

WE CAN EXTEND THIS INTUITION FOR 
PROGRAM ANALYSIS

STATIC ANALYSIS: CONTROL FLOW GRAPHS
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COMPACTING THE FLOW CHART
STATIC ANALYSIS: CONTROL FLOW GRAPHS

FROM FLOWCHARTS TO CONTROL FLOW 
GRAPHS

• This graph is needlessly verbose

• Too many nodes that communicate 
nothing

FWHAT IF WE ELIMINATE THE 1 
INSTRUCTION PER NODE CONSTRAINT?

• Attempt to use as few edges as 
possible
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BASIC BLOCKS
STATIC ANALYSIS: CONTROL FLOW GRAPHS

DEFINITION: SEQUENCE OF INSTRUCTIONS GUARANTEED TO 
EXECUTE WITHOUT INTERRUPTION
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BASIC BLOCKS BOUNDARIES
STATIC ANALYSIS: CONTROL FLOW GRAPHS

TWO DISTINGUISHED INSTRUCTIONS IN A BLOCK (MAY BE THE 
SAME INSTRUCTION)

• Leader: An instruction that begins the block

• Terminator: An instruction that ends the block
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BASIC BLOCKS BOUNDARIES
STATIC ANALYSIS: CONTROL FLOW GRAPHS

TWO DISTINGUISHED INSTRUCTIONS IN A BLOCK (MAY BE THE 
SAME INSTRUCTION)

• Leader: An instruction that begins the block

• Terminator: An instruction that ends the block

A jump (ifz, goto)

The first instruction in the procedure

The target of a jump

The last instruction of the procedure

A call (We’ll use a special LINK edge)

The instruction after an terminator



LECTURE END!

• Static Analysis

• Control Flow Graphs



NEXT TIME

EXPLORE THE USE OF THE CONTROL 
FLOW GRAPH FOR FINDING 
VULNERABILITIES

SHOW ADDITIONAL PROGRAM 
ABSTRACTIONS TO SIMPLIFY ANALYSIS, 
IN PARTICULAR SSA FORM

31
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