
EXERCISE #4

1

DYNAMIC ANALYSIS REVIEW

Write your name and answer the following on a piece of paper

• Give a function and multiple input sets that collectively exercise 100% branch

coverage on that function but less than 100% path coverage

STATIC ANALYSIS
EECS 677: Software Security Evaluation

Drew Davidson

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Quiz dates are now posted

Quiz 1 is NEXT FRIDAY (in class)

LAST TIME: DYNAMIC ANALYSIS
4

REVIEW: DYNAMIC ANALYSIS

High-Level Overview of a classic auditing
technique: testing
• Try the program, see what happens!
• A sound analysis: if you saw it, it happened
• Challenge: exercising all behavior

LECTURE OUTLINE

• Static Analysis

• Control Flow Graph

BEYOND TESTING
6

INTRO: STATIC ANALYSIS

What if we didn’t have to “guess” at an input?
• Extract the “rules” of the program
• Examine the effect of the program without providing explicit

values

7

SOME FORMS OF STATIC ANALYSIS
CATEGORIZING ANALYSES

Syntax Analysis

Dataflow Analysis

Model Checking

SYNTAX ANALYSIS
8

OVERVIEW: STATIC ANALYSIS

Some troubling behavior of a program may be
discoverable via simply observing syntactic
structure

9

MODEL CHECKING
OVERVIEW: STATIC ANALYSIS

Extract a (finite) state system that
approximates the analysis target
Example:
• States: configuration of the system
• Edges: transitions within the system

Check if the system can violate some
correctness property

Each state indicates the value of a memory bit

10

MODEL CHECKING
STATIC ANALYSIS - MODEL CHECKING

State space

(artist’s rendition)

State space explosion!

11

(SYMBOLIC) MODEL CHECKING
STATIC ANALYSIS – MODEL CHECKING

Extract a (finite) state system that
approximates the analysis target
• States: configurations of the system
• Edges: transitions within the system

Check if the system can violate some
correctness property

Each state indicates a set of values

or the truth of some abstract predicate

12

CEGAR
STATIC ANALYSIS – MODEL CHECKING

Counterexample-guided abstraction
refinement
• Begin with a coarse, over-approximate

abstraction of the system
• Check system correctness
• If a violation is reported, verify it!

• If its a true positive – report it
• If it’s a false positive – refine the model to exclude it

and check the new model

DATAFLOW ANALYSIS
13

OVERVIEW: STATIC ANALYSIS

Capture the effect of each statement on the
program’s data
• Compose the statements together to

determine the aggregate effect of the
program

14

ANALYSIS SPECIFICITY
STATIC ANALYSIS: DATAFLOW

Flow Sensitive
int f(bool b) {

 Obj * o = null;

 int v = 2;

 if (b) {

 o = new Obj ();

 v = rand_int();

 }

 if (v == 2){

 o->setInvalid()

 }

 return o->property();

}

15

ANALYSIS SPECIFICITY
STATIC ANALYSIS: DATAFLOW

Path Sensitive
int f(bool b) {

 Obj * o = null;

 int v = 2;

 if (b) {

 o = new Obj ();

 v = rand_int();

 }

 if (v == 2){

 o->setInvalid()

 }

 return o->property();

}

ABSTRACT INTERPRETATION
16

CATEGORIZING ANALYSES

(Over)approximate the state of the program
(Over)approximate the domain of values

ABSTRACT INTERPRETATION
17

CATEGORIZING ANALYSES

(Over)approximate the state of the program
(Over)approximate the domain of values

Anything that isn’t crystal clear to a static analysis tool probably
isn’t clear to your fellow programmers, either. The classic
hacker disdain for “bondage and discipline languages” is short-
sighted – the needs of large, long-lived, multi-programmer
projects are just different than the quick work you do for
yourself

- John Carmack

OVERVIEW DONE!
18

CATEGORIZING ANALYSES

We’ll cover many of these techniques (and more!)

Next up:
- Start looking at toolsets to build our analyses
- Looking at the kinds of program flaws that can cause

problems

LECTURE OUTLINE

• Static Analysis Overveiw

• Control Flow Graphs

CONTROL FLOW GRAPHS
20

Program analysis relies heavily on two questions
• (How) can we get to a particular program point?
• What is the program configuration at a given point?

Helpful to structure program instructions as a graph
• Visualize transfer of control
• Avail ourselves of graph analyses (e.g. reachabilty)

STATIC ANALYSIS: CONTROL FLOW GRAPHS

21

FLOWCHARTS

NOTATION

NODES ARE INSTRUCTIONS

EDGES GO TO SUCCESSOR
NODES UNDER APPROPRIATE
CONDITION

OPERATION

EXECUTE CURRENT
INSTRUCTION

PROCEED TO THE RIGHT
SUCCESSOR

STATIC ANALYSIS: CONTROL FLOW GRAPHS

CODE FLOWCHARTS
22

a = 7

a < 4

a = 7

a += 2

a = 7;

if (a < 4){

 a = 7;

}

a += 2;

source code Instruction Flowgraph

false

true

NOTATION

NODES ARE INSTRUCTIONS

EDGES GO TO SUCCESSOR
NODES UNDER APPROPRIATE
CONDITION

OPERATION

EXECUTE CURRENT
INSTRUCTION

PROCEED TO THE RIGHT
SUCCESSOR

STATIC ANALYSIS: CONTROL FLOW GRAPHS

23

FLOWCHARTS: VISUALIZING CONTROL

if a < b

if a < 10

a = a + b

if b < 3

a = 1

return

void funk(int a, int b){

 if (a < b){

 if (a < 10){

 a = a + b;

 }

 }

 if (b < 3){

 a = 1;

 }

 return;

}

STATIC ANALYSIS: CONTROL FLOW GRAPHS

24

FLOWCHARTS: VISUALIZING CONTROL

if a < b

if a < 10

a = a + b

if b < 3

a = 1

return

void funk(int a, int b){

 if (a < b){

 if (a < 10){

 a = a + b;

 }

 }

 if (b < 3){

 a = 1;

 }

 return;

}

STATIC ANALYSIS: CONTROL FLOW GRAPHS

25

FLOWCHARTS: A USEFUL TOOL

MAYBE THIS IS HOW YOU LEARNED TO
THINK ABOUT CODE!

IT’S A NICE WAY TO VISUALIZE THE
CONTROL FLOW OF THE PROGRAM

WE CAN EXTEND THIS INTUITION FOR
PROGRAM ANALYSIS

STATIC ANALYSIS: CONTROL FLOW GRAPHS

26

COMPACTING THE FLOW CHART
STATIC ANALYSIS: CONTROL FLOW GRAPHS

FROM FLOWCHARTS TO CONTROL FLOW
GRAPHS

• This graph is needlessly verbose

• Too many nodes that communicate
nothing

FWHAT IF WE ELIMINATE THE 1
INSTRUCTION PER NODE CONSTRAINT?

• Attempt to use as few edges as
possible

27

BASIC BLOCKS
STATIC ANALYSIS: CONTROL FLOW GRAPHS

DEFINITION: SEQUENCE OF INSTRUCTIONS GUARANTEED TO
EXECUTE WITHOUT INTERRUPTION

28

BASIC BLOCKS BOUNDARIES
STATIC ANALYSIS: CONTROL FLOW GRAPHS

TWO DISTINGUISHED INSTRUCTIONS IN A BLOCK (MAY BE THE
SAME INSTRUCTION)

• Leader: An instruction that begins the block

• Terminator: An instruction that ends the block

29

BASIC BLOCKS BOUNDARIES
STATIC ANALYSIS: CONTROL FLOW GRAPHS

TWO DISTINGUISHED INSTRUCTIONS IN A BLOCK (MAY BE THE
SAME INSTRUCTION)

• Leader: An instruction that begins the block

• Terminator: An instruction that ends the block

A jump (ifz, goto)

The first instruction in the procedure

The target of a jump

The last instruction of the procedure

A call (We’ll use a special LINK edge)

The instruction after an terminator

LECTURE END!

• Static Analysis

• Control Flow Graphs

NEXT TIME

EXPLORE THE USE OF THE CONTROL
FLOW GRAPH FOR FINDING
VULNERABILITIES

SHOW ADDITIONAL PROGRAM
ABSTRACTIONS TO SIMPLIFY ANALYSIS,
IN PARTICULAR SSA FORM

31

	Slide 1: ExerCise #4
	Slide 2: Static Analysis
	Slide 3: Administrivia and Announcements
	Slide 4: Last Time: Dynamic Analysis
	Slide 5: Lecture Outline
	Slide 6: Beyond Testing
	Slide 7: Some Forms of STATIC Analysis
	Slide 8: Syntax Analysis
	Slide 9: Model Checking
	Slide 10: Model Checking
	Slide 11: (Symbolic) Model Checking
	Slide 12: CEGAR
	Slide 13: DataFLOW Analysis
	Slide 14: Analysis SPecificity
	Slide 15: Analysis SPecificity
	Slide 16: Abstract Interpretation
	Slide 17: Abstract Interpretation
	Slide 18: Overview Done!
	Slide 19: Lecture Outline
	Slide 20: Control Flow Graphs
	Slide 21: FlowCharts
	Slide 22: CODE FlowCharts
	Slide 23: FlowCharts: Visualizing Control
	Slide 24: FlowCharts: Visualizing Control
	Slide 25: FlowCharts: A Useful TOOL
	Slide 26: Compacting The Flow Chart
	Slide 27: Basic Blocks
	Slide 28: Basic Blocks Boundaries
	Slide 29: Basic Blocks Boundaries
	Slide 30: Lecture END!
	Slide 31: Next TiME

