EXERCISE #4

DYNAMIC ANALYSIS REVIEW

Write your name and answer the following on a piece of paper

« Give a function and multiple input sets that collectively exercise 100% branch
coverage on that function but less than 100% path coverage

STATIC ANALYSIS

EECS 677: Software Security Evaluation

Drew Davidson

Quiz dates are now posted

Quiz 1 is NEXT FRIDAY (in class)

ADMINISTRIVIA
AND
ANNOUNCEMENTS

LAST TIME: DYNAMIC ANALYSIS

REVIEW: DYNAMIC ANALYSIS

High-Level Overview of a classic auditing

technique: testing

* Try the program, see what happens!

* Asound analysis: if you saw it, it happened
* Challenge: exercising all behavior

BEYOND TESTING

INTRO: STATIC ANALYSIS

What if we didn’t have to “guess” at an input?

e Extract the “rules” of the program

* Examine the effect of the program without providing explicit
values

SOME FORMS OF STATIC ANALYSIS

CATEGORIZING ANALYSES

Syntax Analysis

Model Checking

Dataflow Analysis

SYNTAX ANALYSIS

OVERVIEW: STATIC ANALYSIS

Some troubling behavior of a program may be
discoverable via simply observing syntactic

structure — .
! ‘ L "_f C\Dqsv\mra(:“lli’H’q}Z
] LM\V/ 1<: EON/’, WZK: \ // Sce v e ‘H/\/ Vij

5'{//(}73 {

V

MODEL CHECKING

OVERVIEW: STATIC ANALYSIS

Extract a (finite) state system that
approximates the analysis target
Example:

e States: configuration of the system
* Edges: transitions within the system

Each state indicates the value of a memory bit

Check if the system can violate some
correctness property

MODEL CHECKING

STATIC ANALYSIS - MODEL CHECKING

State space
(artist’s rendition)

-

State space explosion!

Extract a (finite) state system that
approximates the analysis target

e States: configurations of the system
* Edges: transitions within the system

Check if the system can violate some
correctness property

(SYMBOLIC) MODEL CHECKING

STATIC ANALYSIS — MODEL CHECKING

Each state indicates a set of values
or the truth of some abstract predicate

11

CEGAR

STATIC ANALYSIS — MODEL CHECKING

Counterexample-guided abstraction

refinement

* Begin with a coarse, over-approximate
abstraction of the system

* Check system correctness

* |f aviolation is reported, verify it!
e |fits a true positive —report it
e |fit’s a false positive — refine the model to exclude it
and check the new model

12

DATAFLOW ANALYSIS

OVERVIEW: STATIC ANALYSIS

Capture the effect of each statement on the

program’s data

 Compose the statements together to
determine the aggregate effect of the
program

13

ANALYSIS SPECIFICITY

STATIC ANALYSIS: DATAFLOW

e gé?oilobi ;ulfs__- L: f;F\ Flow Sensitive
int v = 2 < l9'+ f
if (b) {éﬁé_ﬁ LE C“"”lﬁ}qu %;‘/’W’L\@/
o =Tew Obj (); QL—L&.‘[" £ (4,/\/
v = rand int 6.?—5‘{’ O M /{C
e[: 4, & biF 96kl | vje)
i v L 2 (L 4L) preciiivn
)

) &L -J-J _'C

return o—>property(2~_; "
AN

ANALYSIS SPECIFICITY

STATIC ANALYSIS: DATAFLOW

fl)oz, Cﬁj;t,ozfgj

int f(bool b) {

Obj * o = null;

int v = 2;
1f (b) {
o = new Obj ();
v = rand 1int();
}
if (v == 2){

o->setInvalid/()
}

return o->property();

2

. (/\(.\-V‘,\ 3

j“,\;(.}

[;)z/ Iyt 2,5
Z"/J’CJ

@) ch’ 7, J))}é{“-

Path Sensitive

! \vl/)(‘/(i (

5 Ju) C fﬁ((vv)) 4

/7’

d‘c O‘U/‘ /<w/~()e
o(acﬁ«, \/ocfotq
\9€f—-}>x‘ﬂ4 C‘H’vcr w\wﬁp)

15

16

ABSTRACT INTERPRETATION

CATEGORIZING ANALYSES —_

(£ ((ax0) ¢

20 <
= ¢
Q! -‘— ___? /
(Over)approximate the state of the program 5

(Over)approximate the domain of values -

.
| /o

ABSTRACT INTERPRETATION

CATEGORIZING ANALYSES

(Over)approximate the state of the program
(Over)approximate the domain of values

Anything that isn’t crystal clear to a static analysis tool probably
isn’t clear to your fellow programmers, either. The classic
hacker disdain for “bondage and discipline languages” is short-
sighted — the needs of large, long-lived, multi-programmer

projects are just different than the quick work you do for
yourself

- John Carmack

17

OVERVIEW DONE!

CATEGORIZING ANALYSES

We’'ll cover many of these techniques (and more!)

Next up:

Start looking at toolsets to build our analyses
Looking at the kinds of program flaws that can cause
problems

18

LECTURE OUTLINE

* Static Analysis Overve W

* Control Flow Graphs

CONTROL FLOW GRAPHS

STATIC ANALYSIS: CONTROL FLOW GRAPHS

Program analysis relies heavily on two questions
* (How) can we get to a particular program point?
* What is the program configuration at a given point?

i Abc')ﬁt It

Helpful to structure program instructions as a graph
* Visualize transfer of control
e Avail ourselves of graph analyses (e.g. reachabilty)

FLOWCHARTS

STATIC ANALYSIS: CONTROL FLOW GRAPHS

A Brief Lesson in Flow Charts

Start!
NOTATION Thisisafowehart | —%X | o) vop garjtn | ——p "L';ag:"
NODES ARE INSTRUCTIONS —
EDGES GO TO SUCCESSOR L"‘“’ /: A
NODES UNDER APPROPRIATE ot | e, | B | © B
CONDITION I "
yves!

OPERATION / Ao vou

T“""" dumb?
EXECUTE CURRENT
INSTRUCTION Wait, e

Ok, see the what?

PROCEED TO THE RIGHT Hoxes? - o | mascome

SUCCESSOR arrows?

GraphJam.com

CODE FLOWCHARTS

STATIC ANALYSIS: CONTROL FLOW GRAPHS

NOTATION source code Instruction Flowgraph
NODES ARE INSTRUCTIONS a=7; a=7
EDGES GO TO SUCCESSOR s <.4” !
NODES UNDER APPROPRIATE &=l — a<4
CONDITION } | true

a += 2;
OPERATION false orar
EXECUTE CURRENT '

INSTRUCTION

PROCEED TO THE RIGHT
SUCCESSOR

FLOWCHARTS: VISUALIZING CONTROL

STATIC ANALYSIS: CONTROL FLOW GRAPHS

void funk (int a, int b) { if a 713 —
if (a < b){ |
if (a < 10){ ifa<|lo
a =a t+ b; !
} a=a+b -
|
} |
if (b < 3){ if b < 3 =
a = 1;
] |
a =1
return;
} i _
return

24

FLOWCHARTS: VISUALIZING CONTROL

STATIC ANALYSIS: CONTROL FLOW GRAPHS

void funk (int a, int Db) { 5 E S e T "ﬁ (a< L)

if (a < b){ ! B
if (a < 10){ if a <| 10 GC(U@
a =a t+ b;
} a=a*+b — \>

i Req el

— H- o~
Hh
Q i~
IIG
VAN
=
w
[
Hh
«— O
AN
w
It

return; —_— 11 T—F]rLj
tu

FLOWCHARTS: A USEFUL TOOL

STATIC ANALYSIS: CONTROL FLOW GRAPHS

MAYBE THIS IS HOW YOU LEARNED TO '
THINK ABOUT CODE! ESSENTIAL TOOLS FOR YOUR

) TOOL KIT
IT’S A NICE WAY TO VISUALIZE THE m
CONTROL FLOW OF THE PROGRAM

WE CAN EXTEND THIS INTUITION FOR
PROGRAM ANALYSIS

25

COMPACTING THE FLOW CHART

STATIC ANALYSIS: CONTROL FLOW GRAPHS

FROM FLOWCHARTS TO CONTROL FLOW
GRAPHS

e This graph is needlessly verbose

e Too many nodes that communicate
nothing

FWHAT IF WE ELIMINATE THE 1
INSTRUCTION PER NODE CONSTRAINT?

e Attempt to use as few edges as
possible

26

BASIC BLOCKS

STATIC ANALYSIS: CONTROL FLOW GRAPHS

DEFINITION: SEQUENCE OF INSTRUCTIONS GUARANTEED TO
EXECUTE WITHOUT INTERRUPTION

27

BASIC BLOCKS BOUNDARIES

STATIC ANALYSIS: CONTROL FLOW GRAPHS

TWO DISTINGUISHED INSTRUCTIONS IN A BLOCK (MAY BE THE
SAME INSTRUCTION)

* Leader: An instruction that begins the block

e Terminator: An instruction that ends the block

THE
TERMINATOR
.. s b
]

. ’

y ey
4 X
LY
l N5
A YN
. X g
& NPy
i
-

| L

28

BASIC BLOCKS BOUNDARIES

STATIC ANALYSIS: CONTROL FLOW GRAPHS

TWO DISTINGUISHED INSTRUCTIONS IN A BLOCK (MAY BE THE
SAME INSTRUCTION)

* Leader: An instruction that begins the block

The first instruction in the procedure
The target of a jump

The instruction after an terminator

* Terminator: An instruction that ends the block

The last instruction of the procedure
A jump (ifz, goto)
A call (We’ll use a special LINK edge)

NEXT TIME

EXPLORE THE USE OF THE CONTROL
FLOW GRAPH FOR FINDING
VULNERABILITIES

SHOW ADDITIONAL PROGRAM
ABSTRACTIONS TO SIMPLIFY ANALYSIS,
IN PARTICULAR SSA FORM

	Slide 1: ExerCise #4
	Slide 2: Static Analysis
	Slide 3: Administrivia and Announcements
	Slide 4: Last Time: Dynamic Analysis
	Slide 5: Lecture Outline
	Slide 6: Beyond Testing
	Slide 7: Some Forms of STATIC Analysis
	Slide 8: Syntax Analysis
	Slide 9: Model Checking
	Slide 10: Model Checking
	Slide 11: (Symbolic) Model Checking
	Slide 12: CEGAR
	Slide 13: DataFLOW Analysis
	Slide 14: Analysis SPecificity
	Slide 15: Analysis SPecificity
	Slide 16: Abstract Interpretation
	Slide 17: Abstract Interpretation
	Slide 18: Overview Done!
	Slide 19: Lecture Outline
	Slide 20: Control Flow Graphs
	Slide 21: FlowCharts
	Slide 22: CODE FlowCharts
	Slide 23: FlowCharts: Visualizing Control
	Slide 24: FlowCharts: Visualizing Control
	Slide 25: FlowCharts: A Useful TOOL
	Slide 26: Compacting The Flow Chart
	Slide 27: Basic Blocks
	Slide 28: Basic Blocks Boundaries
	Slide 29: Basic Blocks Boundaries
	Slide 30: Lecture END!
	Slide 31: Next TiME

