EXERCISE #35

BUG ISOLATION REVIEW
Write your name and answer the following on a piece of paper

Cooperative Bug Isolation (CBI) avoids the use of a periodic global counter to report
bugs. It also avoids the use of a random test at each report point. Why?

[0:300”,\ -~ ~vo M
let/ QL

Cw{hj qr/jcd* EA

77 Pu e \&/)L @ \.00 l(),‘/\
P ot
“p 4 oL f&]’/c‘,

ADMINISTRIVIA
AND
ANNOUNCEMENTS

SUPPLY CHAIN SECURITY

EECS 677: Software Security Evaluation

Drew Davidson

GRAB-BAG TOPICS!

PREVIOUSLY: BUG ISOLATION

LAST LECTURE REVIEW

|SOLATING CAUSE-EFFECT CHAINS IN
PROGRAM MISBEHAVIOR

* Why we isolate bugs
* How we isolate bugs

7% THIS LECTURE
BUG ISOLATION

SOFTWARE SUPPLY CHAIN SECURITY

* Supply chain overview
* Threats
* Defenses

o Q’)

@

WHAT IS A SOFTWARE SUPPLY CHAIN?

SOFTWARE SUPPLY CHAINS: OVERVIEW

DEFINITION

The(components, libraries)tools, and processes used to develop,
build, and publish a software artifact. g
- W‘l‘q”ﬂh‘ a

RELATED TERMINOLOGY

(somewhat inspired by traditional supply chains)

Software Bill of Materials (SBOM) — A declaration of the the
inventory of components used to build a software artifact

%OFTWARE SUPPLY CHAIN - IMPACT
SOFTWARE SUPPLY CHAINS: OVERVIEW

3" party-codg
65 — 95%

Your code [
5 - 35%

%MODERN SOFTWARE ECOSYSTEMS

LBES (LANGUAGE-BASED ECOSYSTEMS)

The enabling infrastructure for delivering software supply chains

- Packages
- Dependencies s _y@\
- Repositories)@Cdo(c“/ @ 7 S*"" "}5 "7 \0‘(

v)
el - e | et
/\ " ij C:j - 'ﬁCd' e —

a(e? Jef

DEPENDENCY WEBS

SOFTWARE SUPPLY CHAINS: OVERVIEW

DEPENDENCIES... HAVE DEPENDENCIES!

TWOCGSSGS used to develop,
build, andpublish a software artifact.

Wu” (a d'e

PACKAGE MANAGERS FRONTENDS

SOFTWARE SUPPLY CHAINS: OVERVIEW

VASTLY SIMPLIFY THE TASK OF DEPENDENCY MANAGEMENT

Finding, fetching and installing the dependency web

BENIGN-MODEL CHALLENGES

SOFTWARE SUPPLY CHAINS: THREATS

EVEN LACKING MALICIOUS INTENT, SUPPLY CHAIN SECURITY CHALLENGES ARISE

The components, libraries, tools, and processes used to develop,
build, and publish a software artifact.

Software rot — The world changes, software needs to change with it

Incompatibilities — A dependency might change

12

WHO UPLOADS PACKAGES?

SOFTWARE SUPPLY CHAINS: THREATS

ANYBODY!

Most package repositories are completely free to use

Allow pseudonymous identification

13

MOST PACKAGES ARE
NEVER INSTALLED

THE SEA OF GARBAGE

SOFTWARE SUPPLY CHAINS: THREATS

Percent of All Packages

_awe|

Weekly Downloads

s npm
. PyP|
B RubyGems

14

% MALICIOUS-MODEL CHALLENGES
SOFTWARE SUPPLY CHAINS: THREATS

ANYBODY CAN UPLOAD... DESPITE THEIR INTENT

Very little vetting on whether the package is ok

The ‘

BAD GUY

CLUB For
ViLLAINS I

THREAT VECTORS

SOFTWARE SUPPLY CHAINS: THREATS

INSTALL-TIME ATTACKS

Insert bad code that impacts your installation

f\
'ﬁfj ek f«Jf\Af’c,

Usev

RUN-TIME ATTACKS

Insert bad code that impacts your users

1

‘"“ycb faw(f-tj ¢
Wer g A/N‘
‘8;1‘4/’\\ & A Uwser”

fa- s

16

PROTESTWARE

SOFTWARE SUPPLY CHAINS: THREATS

APPLICATION SECURITY | ECOSYSTEMS , OPEN SOURCE

Open source maintainer pulls the plug
on npm packages colors and faker,
now what?

17

Upon digging deeper, it turns out that the
developer himself introduced an infinite loop in
colors, thereby sabotaging its functionality, and
purged the functional code from the ‘faker’

package in version 6.6.6.

PROTESTWARE

SOFTWARE SUPPLY CHAINS: THREATS

BIG sabotage: Famous npm package deletes files to protest Ukraine
war

By Ax Sharma March 17, 2022 05:51 AM 12

7 | Protestware: Ukraine's ongoing crisis bleeds
i (/4 into open source

Select versions (10.1.1 and 10.1.2) of the massively popular 'node-ipc'
(e /. package were caught containing malicious code that would overwrite
or delete arbitrary files on a system for users based in Russia and
Belarus. These versions are tracked under CVE-2022-23812.

18

MALWARE / SPYWARE

SOFTWARE SUPPLY CHAINS: THREATS

Home News Security NPM packages posing as speed testers install crypto miners instead

NPM packages posing as speed testers install crypto miners instead

By Bill Toulas February 14,2023 12:25 PM 0

20

SOFTWARE SUPPLY CHAINS: THREATS

CONFUSION ATTACKS

HOw DO YOU GET MALICIOUS

PACKAGES INSTALLED

Trick the user!

THIS LECTURE

BUG ISOLATION

SOFTWARE SUPPLY CHAIN SECURITY

* Supply chain overview
* Threats
* Defenses]

[

What are we supposed to do about all this trouble?

O¢-

/K

21

om ds\n

SOFTWARE SUPPLY CHAINS

Defending Against Package Typosquatting

Matthew Taylor!, Ruturaj Vaidya!, Drew Davidson!, Lorenzo De Carli2, and
Vaibhav Rastogi®*

1 University of Kansas, Lawrence, KS, USA
{mjt, ruturajkvaidya, drewdavidson}@ku.edu,
2 Worcester Polytechnic Institute, Worcester, MA, USA
ldecarli@wpi.edu
* University of Wisconsin-Madison, Madison, WI, USA
vaibhavrastogi@google.com

Abstract. Software repositories based on a single programming language are
common. Examples include npm (JavaScript) and PyPl (Python). They encour-
age code reuse, making it trivial for developers to import external packages.
Unfortunately, the ease with which packages can be published also facilitates ty-
posquatling: uploading a package with name similar to that of a highly popular
package, with the aim of capturing some of the popular package’s installs. Ty-
posquatting frequently occurs in the wild, is difficult to detect manually, and has
resulted in developers importing incorrect and sometimes malicious packages.
‘We present TypoGard, a tool for identifying and reporting potentially typosquat-
ted imports to developers. TypoGard implements a novel detection technique,
based on the analysis of npm and PyPI. It leverages a model of lexical similarity
between names, and incorporates the notion of package popularity. It flags cases
where unknown /scarcely used packages would be installed in place of popular
ones with similar names, before installation occurs. We evaluated TypoGard on
both npm, PyPI and RubyGems, with encouraging results: TypoGard flags up
to 99.4% of known typosquatting cases while generating limited warnings (up to
0.5% of package installs), and low overhead (2.5% of package install time).

1 Introduction

Package managers automate the complex task of deploying 3rd-party depen-
dencies into a codebase, by transitively resolving and installing all code upon
which a given package—which the user wishes to install—depends. One of the
most common uses of package managers is in the context of large repositories of
code packages based on a single programming language. Package managers are
undeniably useful, with open, free-for-all repositories like npm for Node.js, PyPI
for Python, and RubyGems for Ruby, collectively serving billions of packages
per week. However, they also come with problems.

The open, uncurated nature of these repositories means that any developer
can upload a package with a name of their choosing. This circumstance gives
rise to typosquatting, whereby a developer uploads a “perpetrator” package that
is confusable with an existing “target” package due to name similarity. As a
result the user, intending to install the target package, may accidentally request
the confusable perpetrator package. Determining why perpetrator packages are
created is a challenging and ill-defined problem, as solving it requires inferring

* Currently employed at Google.

Ce\ed
Color-)sd

PREVENTING CONFUSION: PACKAGE NAMES

Beyond Typosquatting: An In-depth Look at Package Confusion

Shradha Neupane
Worcester Polytechnic Institute

Drew Davidson
University of Kansas

Abstract

Package confusion incidents—where a developer is misled
into importing a package other than the intended one—are
one of the most severe issues in supply chain security with
significant security implications, especially when the wrong
package has malicious functionality. While the prevalence of
the issue is generally well-documented, little work has studied
the range of mechanisms by which confusion in a package
name could arise or be employed by an adversary. In our
work, we present the first comprehensive categorization of
the mechanisms used to induce confusion, and we show how
this understanding can be used for detection.

First, we use qualitative analysis to identify and rigorously
define 13 categories of confusion mechanisms based on a
dataset of 1200+ documented attacks. Results show that, while
package confusion is thought to mostly exploit typing errors,
in practice attackers use a variety of mechanisms, many of
which work at semantic, rather than syntactic, level. Equipped
with our categorization, we then define detectors for the dis-
covered attack categories, and we evaluate them on the entire
npm package set.

Evaluation of a sample, performed through an online survey,
identifies a subset of highly effective detection rules which
(i) return high-quality matches (77% matches marked as po-
tentially or highly confusing, and 18% highly confusing) and
(ii) generate low warning overhead (1 warning per 100M+
package pairs). Comparison with state-of-the-art reveals that
the large majority of such pairs are not flagged by existing
tools. Thus, our work has the potential to concretely improve
the identification of confusable package names in the wild.

1 Introduction

Modern, language-based software ecosystems (LBEs) contain
expansive repositories of third-party code that can be conve-
niently downloaded and installed by developers. The pack-
ages' of code contained in these repositories supply ready-

! Although various LBEs use specialized names for the units of code that
they serve, such as “gems™ [2] or “crates™ [11], we refer generically to cach

Grant Holmes
University of Kansas

Elizabeth Wyss
University of Kansas

Lorenzo De Carli
University of Calgary

made, diverse functionality to be used as part of a larger
codebase. The popularity of package repositories is apparent
through their usage: The package ecosystems npm for node.js,
RubyGems for Ruby, and PyPI for Python collectively host
millions of distinct packages and serve billions of package
downloads weekly [66].

Tooling and automation has eased the task of finding and
deploying packages. A simple invocation of the install com-
mand for the package manager frontend tool can be responsi-
ble for the cascading download of hundred of distinct pack-
ages, as (transitive) dependencies are discovered, fetched, and
installed. The ease of use built into package ecosystems also
increases the likelihood of a developer completing the entire
installation process on a package that they did not intend to
download. Should an error be made when invoking the name
of ani led package. a completely different package name
will downloaded and deployed. This set of circumstances al-
lows the use of the LBE as a vector for software supply chain
attacks. An adversary might publish a malicious package that
attacks a developer when the package is installed, or deliv-
ers malicious functionality to end-users when the malicious
package is used as part of a larger project.

In order to realize the type of incident described above, a
victim developer needs to download the malicious package.
Thus, the adversary’s goal is to carry out a package confu-
sion attack, in which a malicious package is created that is
designed to be confused with a legitimate target package and
downloaded by mistake. Such attacks have been shown to
occur in practice [56], effecting developers that mistakenly
install the package directly, and any other deployments that
includes a malicious package in its transitive dependencies.

Confusion attacks can leverage the long tail distribution
of packages. The top 1% most popular packages are respon-
sible for over 99% of downloads [58]. Since LBE package
managers fetch a package based on its name, the attacker can
upload a package with a name that is easily confused with a
legitimate popular package and passively launch the attack

distinct unit as a package in this paper.

USENIX Association

32nd USENIX Security Symposium 3439

22

SCRUTINY

SOFTWARE SUPPLY CHAINS: DEFENSES

CAN WE TELL IF A PACKAGE IS BEING VETTED?

SCRUTINY

CAN WE TELL IF A PACKAGE IS BEING VETTED?

SOFTWARE SUPPLY CHAINS

(Nothing But) Many Eyes Make All Bugs Shallow

Elizabeth Wyss
University of Kansas
Lawrence, KS, USA
ElizabethWyss@ku.edu

ABSTRACT

Open source package repositories have become a crucial component
of the modern software supply chain since they enable developers
to easily and rapidly import code written by others. However, low
quality, poorly vetted code residing in such repositories exposes
developers and end-users to dangerous bugs and vulnerabilities at
a large scale.

Such issues have recently led to the creation of government-
backed verification standards pertaining to packages, as well as a
significant body of developer folklore regarding what constitutes
areliable package. However, there exists little academic research
assessing the relationships between recommended development
practices and known package issues in this domain.

Motivated by this gap in understanding, we conduct a large-scale
study that formally evaluates whether adherence to these guidelines
meaningfully impacts reported issues and bug maintenance activity
across the most widely utilized npm packages (encompassing 7,162
packages with over 100K weekly downloads each), which unveiled
wide disparities across package-level metrics.

We find that it is only recommendations pertaining to a broad
notion of scrutiny that provide strong and reliable insights into
the reporting and resolving of package issues. These findings pose
significant implications for developers, who seek to identify well-
maintained packages for use, as well as security researchers, who
seek to identify suspicious packages for critical observation.

CCS CONCEPTS

« Software and its engineering — Software libraries and repos-
itories; Software verification and validation.

KEYWORDS

software supply chain, open-source, package repositories

ACM Reference Format:

Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson. 2023. (Nothing But)
Many Eyes Make All Bugs Shallow. In Proceedings of the 2023 Workshop on
Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED
'23), November 30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3605770.3625216

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SCORED *23, November 30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0263-1/23/11.
hitps://doi.org/10.1145/3605770.3625216

Lorenzo De Carli
University of Calgary
Calgary, CA
Lorenzo.DeCarli@ucalgary.ca

Drew Davidson
University of Kansas
Lawrence, KS, USA
DrewDavidson@ku.edu

1 INTRODUCTION

Modern software infrastructure often relies on third-party code
dependencies, known as packages, residing in open source reposi-
tories. The rapid rise of these language-based package ecosystems
highlights their widespread use and importance to the software
development community. The largest of such language-based repos-
itories is npm [70] for Node.js, which serves billions of weekly
downloads of more than two million unique packages, all the while
continually growing at a rate of nearly one thousand new packages
per day [20].

npm’s frontend package manager allows developers to easily
import packages into their own codebases via a simple command
line interface, which in turn has enabled wide-scale code shar-
ing, extensive code reuse, and rapid software development cycles.
Despite these advantages, this very process has also enabled the
propagation of dangerous bugs and vulnerabilities, as illustrated by
the almost three thousand common vulnerabilities and exposures
(CVEs) which have been derived from npm packages alone [6].

Attempting to avoid these problems, the software development
community surrounding npm asserts considerable claims regarding
how to select a reliable package [9, 12, 54, 61, 74], but these claims
are largely untested in empirical settings. In a similar vein, recent
national cybersecurity initiatives [1] have led the U.S. government
to issue official development standards [13], aimed at catching
vulnerabilities and other software flaws.

This paper seeks to formally evaluate whether adherence to these
guidelines meaningfully impacts the quality-driven outcomes of
packages—including reported issues and bug maintenance activity.
This particular notion of quality serves to aid users in avoiding
software defects, which may expose attack surfaces to adversaries
along the software supply chain.

We encounter several challenges in our work. A first challenge
exists in defining a representative and effective dataset for our
analysis. npm is a treasure trove of package data, but also an ex-
tremely noisy one, containing large amounts of empty and unused
packages [68]. We opt to focus on the most frequently downloaded
npm packages because they have the greatest overall impacts and
represent the most typical use cases. Packages that garner more
than 100K weekly downloads account for the majority of all pack-
age downloads in npm [68], and they are thus representative of
general repository usage. Applying this insight, we extract a wide
range of package metrics for 7,162 of the most widely-utilized npm
packages, which each boast weekly download counts ranging from
100K to 191M. Finally, we utilize the bug maintenance activity and
the issues reported against these packages to comparatively assess
proposed advice and standards.

A second challenge of this study is that different software met-
rics may measure related, overlapping aspects, and thus may not
be independent. It is important to distinguish metrics that truly

24

PREVENTING CONFUSION: CLONES

SOFTWARE SUPPLY CHAINS

What the Fork? Finding Hidden Code Clones in npm

Elizabeth Wyss Lorenzo De Carli Drew Davidson
University of Kansas Wi Polytechnic Insti University of Kansas
Lawrence, KS, USA Worcester, MA, USA Lawrence, KS, USA
ElizabethWyss@ku.edu Idecarli@wpi.edu DrewDavidson@ku.edu

ABSTRACT

This work presents findings and mitigations on an under-
studied issue, which we term shrinkwrapped clones, that is
endemic to the npm software package emsyslnm A shrink-

wrapped clone is a package which dupl. dupl

the code of another package without any mdu:auun o refer-
ence to the original package. This phenomenon represents a
challenge to the hygiene of package ecosystems, as a clone
package may siphon interest from the package being cloned,
or create hidden duplicates of vulnerable, insecure code which
can fly under the radar of audit processes.

M d by these d We propose UNW! m\r-
PER, 2 b top ically detect shrinkwrappy
clones and match them to their source package. UNWRAP-
PER uses a package difference metric based on directory tree
similarity, augmented with a prefilter which quickly weeds
out packages unlikely to be clones of a target. Overall, our
prototype can compare a given package within the entire
npm ecosystem (1,716,061 packages with 20,190,452 differ-
ent versions) in 72.85 seconds, and it is thus practical for
live deployment. Using our tool, we performed an analysis
of a subset of npm packages, which resulted in finding up to
6,292 previously unknown shrinkwrapped clones, of which
up to 207 carried vulnerabilities from the original package
that had already been fixed in the original package. None of

line. While seamless import of external code is convenient,
it also creates problems: developers tend to assume code to
be reliable rather than vetting prior to import [6], and once a
package is imported, latent bugs and vulnerabilities become
part of the final application. Importing the “wrong™ package
may cause significant supply-chain security issues [17].

This work presents findings and mitigations on an under-
studied issue within the npm package repository’, which we
term shrinkwrapped clones We use this term to refer to pack-
ages which are uploaded to a package repository and contain
mde that is identical. or nearly-identical, to that of an existing

) package. Specifically, we discover two types of
clones: (1) identical clonex which contain source code that is
identical to that of an existing package. and (i) close clones,

which make p 1l ficant syntactic/ c changes
to the code, but generallv localized to a small number of files
(we refine this defi in the foll g)- This ph

is characteristic to npm, as this ecosystem lacks the notion
of forks, by which we mean copied code repositories that ex-
plicitly link back to their source repositories (as is common
for example in GitHub [2]). Instead, shrinkwrapped clones in
npm cannot be explicitly linked back their source packages
since npm lacks official t for forking pack

The ph of shrink pped clones rep a
dullmge to the hygiene of package repositories; in particular,
it b to the problem of confusability of npm packages.

such i were di via the
audit process.

1 il 1 bl dard npm

ACM Reference Format:

Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson. 2022. What
the Fork? Finding Hidden Code Clones i npm. In 44th International
Conflerence an Software Engineering (ICSE 22), May 21-29, 2022, Pitts-
burgh, PA, USA. ACM, New York, NY. USA, 12 pages. https://doi.org/
10.1145/3510003.3510168

1 INTRODUCTION

The security and correctness of code stored in package reposi-
tories is an important concern beuuiz such repositories are
crucial to modern soft Indeed, 1

based package repositories such as npm, pypi, and RubyGems
collectively serve billions of pack‘nges each week [39]. Much
of the popul. of package rep fes is due to the pack-
age mavugu frontend, which allows a user to easily import a
package by issuing a simple install directive on the command

Permission to make digital ar hard copies of gart o all of this work foe peesonal
o clissroom use & granted without fee provided that copies are not mute or
dastributed for profit o commerciil advantige and that copies bear this notice
und the full citarsom ces the fisst page. Copyrights for thid pasty cosponcnts of
this work esust be honared. For all other uses, contact the ownes unthor(s).
ICSE '22, May 20-29, 2022, Pirtsburgh, PA. USA

Copyright held by the ownes/sathoe(s)

A(M ISBN 9751450392215/ 22/05.

bt/ ok 0g/10.1 14573530003 3510168

npm contains more than 1.7 million packages, and while the

ecosystem provides a robust search interface, it provides no

in ch g the most approy package to pro-

vide a desired functionality. Previous work on typosquatting

attacks [39] suggests that it is fairly common for developers
to install a package different from the one they intended.

Clones exacerbate these problems. Most obviously, a clone

package causes confi k i,

as clone g are

named similarly to the original package, and in many occasions
they also reuse their metadata (such as the package descrip-
tion). Users of the package repository may thus misattribute
the provenance of a package, giving credit to the wrong de-
veloper for creating a particular codebase. However, we also
find that a non-trivial number of clone packages are rarely
maintained and fail to include updates to the package being
copied. The users of the clone are thereby locked into older
versions of functionality and, crucially, forgo any bug fixes
that are applied to the package being cloned. In effect, the users
of the clone are subject to vulnerabilities which have already
been patched. Moreover, clones can exist deep within pack-
age dependency trees, which means that installing a package
that (transitively) depends on a clone also implicitly installs

W choose npm 45 our repository of laterest becunse & is the legest and mast
.

PREVENTING CONFUSION: CLONES

SOFTWARE SUPPLY CHAINS

What the Fork? Finding Hidden Code Clones in npm

ICSE "22, May 21-29, 2022, Pittsburgh, PA, USA

Table 5 Clone Vulnerability & Popularity
Clone Type Identical (348) Close (5,944)
Likely Downloaded 21 399

More Vulnerable 62 2,304
Likely Downloaded AND More Vulnerable 1 148

More Vulnerable AND Vulnerabilities Undetected by Audit 17 190

Likely Downloaded AND More Vulnerable AND Vulnerabilities Undetected by Audit 0 8

Table 5: Measured popularity and vulnerability statistics of identical clones and close clones

26

PREVENTING CONFUSION: CLONES

SOFTWARE SUPPLY CHAINS

———————————

I'npm interface \: m
|
: npm ~ : \MH__‘______#,ff)
\ crawler | : NPM package
\ ! database
: npm ! (external)
I I
!

listener ~_
or

Clone Prefilter Fingerprint
dataset
2

l

é Clone Detector

PREVENTING INSTALL-TIME EXPLOITS

SOFTWARE SUPPLY CHAINS

Allow package users and repository
maintainers to specify acceptable
install-time behavior

Wolf at the Door:
Preventing Install-Time Attacks in npm with LATcH

Elizabeth Wyss
University of Kansas
Lawrence, KS, USA
ElizabethWyss@ku.edu

Drew Davidson
University of Kansas
Lawrence, KS, USA
DrewDavidson@ku.edu

ABSTRACT

The npm software ecosystem allows developers to easily import
code written by others. However, manual vetting of every indi-
vidual installed component is made difficult in many cases by the
number of transitive depend brought in by Iling popular
packages. This has enabled attackers to propagate malicious code
by hiding it deep into the dependency chains of popular packages.
A particularly dangerous form of attack comes from malicious code
embedded into package install scripts.

We tackle the problem of preventing undesirable install-time
behavior by proposing Latcs, a system for mediating install-time
capabilities of npm packages. LATcH generates permission mani-
fests summarizing each package's install-time behavior and checks

them against user-defined policies to ensure compliance. Polices
in LATCH are expressed in a rich formal policy language that cov-
ers a broad range of use cases. Our key insight is that expressive
Latcu policies empower users to define and enforce their own
individualized security needs.

Evaluation of practical Latch policies on all publicly

labl

Alexander Wittman
University of Kansas
Lawrence, KS, USA

wittmanalex@gmail. com

Lorenzo De Carli
Worcester Polytechnic Institute
Worcester, MA, USA
Idecarli@wpi.edu

In Proceedings of the 2022 ACM Asia Conference on Camputer and Communi-
cations Security (ASIA CCS "22), May 30-June 3, 2022 Nagasaki, japan. ACM.
New York, NY, USA. 15 pages. https/dot org/10.1145/3488932.

1 INTRODUCTION

Many p language ecosy s benefit from public repos-
itories that allow any developer to upload a package that contains
modular functionality for use in other software projects. Although
these package repositories are undeniably useful, they can also be
a vector for a software supply chain attack. In such an attack, the
larger system is compromised through the functionality of an im-
ported component, such as a package. Recently publicized software

supply chain attacks have resulted in execution of crypto-mining
code [51], exfiltration of cred L
tion [20], and other unwanted outcomes. While there are many
ways in which software supply chain issues surface, one of the

most dangerous involves exploiting the install-timne package setup
ackages are d with rou-

and other s fi

npm packages and on a number of real-world attack packages
demonstrates that our approach is effective in identifying and stop-
ping unwanted behavior while minimizing disruption due to unde-
sired alerts.

Soft

mec] In many rep quipp:
tines that allow for buobtmppmA bgnplx embedded within these
bootstrap mechanisms, under most conditions, execute when the
package is installed. As a result, an attack can complete even if the
actual package is never run or imported by the victim. In practice,
setup scripts have been used as a vector for a variety of malicious
beh.n fors [’0 29, 49-51], and there have been over one hundred

CCS CONCEPTS
security i ing: «

« Security and privacy — T
Software and its engineering — Empirical software vahda-
tion.

KEYWORDS
npm, supply chain security, install-time attack, policy language
ACM Reference Format:

Elzabeth Wyss, Alexander Wittman, Drew Davidson, and Lorenzo De Carhi
2022 Wolf at the Door: Preventing Install-Time Attacks in npm with Laren.

d attacks built upon this technique [13, 31].

Even when a package’s installation seripts are not explicitly
designed to do harm, they may still exhibit behavior that some
developers would consider undesirable if they are poorly written

or perform unnecessary of Potentially und ble install-
time op have been d d in many repository pach
including sending machine sp machine identifiers, and

lists of installed packages to remote tracking APLs [24].
In this work, we tackle the risks of install-time software supply

chain comy by ¢ Latcn (Lightweight instAll-Time
CHecker), a system capable of (i) capturing in 4 succinet but ex-
This woek i licensed under a Creative Commons pressive manner the p fo iat -1 by any

Attribution International 4.0 License. S

22, May 30-June 3, 2022 Napasaki, Japas
pyright held by the ownes/suthoe(s)
'5.1-4503.9140.5/22/0!

ttps://doLorg) 10,1145/ 3488932 3529262

} lefined

given package, and (i) those op to
security policies, flagging cases where package behavior violates
the intended policy. Thus, our approach defines a set of install-time
capabilities, and precisely bounds the install-time behavior of each
package within the set of allowed capabilities

28

PREVENTING INSTALL-TIME EXPLOITS

SOFTWARE SUP

Software npm package
Creator registry

$-IS-TE

PLY CHAINS

Production
deployment

Maintainer policy: blocks
malicious packages

Developer policy: blocks
ambiguous behaviors (e.g.,
privacy violations)

29

PREVENTING INSTALL-TIME EXPLOITS

SOFTWARE SUPPLY CHAINS

Upload Time Manifest Inferencing Manifest Enforcement | | Install Time Live Enforcement
. .) i .
. twilio-npm: Manifest User-Defined Policy
Containerized Sandbox
{"unpriveledgedExecs": [{ "';'”195": [)
" weowmgps " "1<ExecOutputOverNetwork>"

Install Script { "emd": "/bin/bash”, B P

Execution "stdout”: {

/| "type": "socket",

System i “ip": "3.22.15.135" @ Outcome:

Call I\ . 7) BLOCKED

Trace /

(Protected Install Script\

Execution

~

-

! p3x-systemd-manager: Manifest

Manifest Manifest

Inference \, {"unpriveledgedExecs": [
| { "emd": "/bin/bash",

Qutcome:
SUCCESSFUL
INSTALL

Outcome:
ALLOWED

"stdout": {
lltypell : lldevtl’

"path": "/dev/pts/@", @
.-} 7)

T i

Client-Side

J

WRAP-UP

SOFTWARE SUPPLY CHAINS

AN APPLICATION IS MORE THAN YOUR CODE
Likely mostly somebody else’s code!
- Very little vetting

- Very little protection

	Slide 1: Exercise #35
	Slide 2: Administrivia and Announcements
	Slide 3: Supply Chain Security
	Slide 4: Where We’re At
	Slide 5: Previously: Bug Isolation
	Slide 6: This lecture
	Slide 7: What is A Software Supply Chain?
	Slide 8: Software Supply Chain - Impact
	Slide 9: Modern software Ecosystems
	Slide 10: Dependency webs
	Slide 11: Package Managers Frontends
	Slide 12: Benign-model Challenges
	Slide 13: Who uploads packages?
	Slide 14: The Sea of Garbage
	Slide 15: Malicious-model Challenges
	Slide 16: Threat vectors
	Slide 17: Protestware
	Slide 18: Protestware
	Slide 19: Malware / Spyware
	Slide 20: Confusion Attacks
	Slide 21: This lecture
	Slide 22: Preventing Confusion: package names
	Slide 23: Scrutiny
	Slide 24: Scrutiny
	Slide 25: Preventing Confusion: Clones
	Slide 26: Preventing Confusion: Clones
	Slide 27: Preventing Confusion: Clones
	Slide 28: Preventing install-time exploits
	Slide 29: Preventing install-time exploits
	Slide 30: Preventing install-time exploits
	Slide 31: Wrap-Up

