
EXERCISE #29
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FUZZING REVIEW

Write your name and answer the following on a piece of paper

In fuzzing, it is easy to generate additional test cases for an analysis target. What are 

some of the strategies for prioritizing which test case to run next?
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WHERE WE’RE AT

DYNAMIC ANALYSIS
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Generating test cases
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PREVIOUSLY: FUZZING
OUTLINE / OVERVIEW

GENERATING RANDOM TEST CASES

Surprisingly effective in practice

The random “fuzz” of white noise

Main challenge is exploring “new” behavior



6

RESEARCH DIRECTION: “GUNKING”
FUZZING

FUZZING AS ADVERSARIAL RECON

Fuzzing is so good at finding bugs that even the bad guys do it

PERHAPS A PROGRAM SHOULD DEPLOY ANTI-FUZZING TECH

What would that look like?
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THIS LECTURE: SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

A METHODICAL APPROACH TO “ABSTRACT” EXECUTION
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RECALL: TEST CASE GENERATION
SYMBOLIC EXECUTION
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THE PROBLEM OF COVERAGE
SYMBOLIC EXECUTION
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PREDICATES GET IN THE WAY!
SYMBOLIC EXECUTION
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ELIMINATING INFEASIBLE PATHS
SYMBOLIC EXECUTION
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THE MAGIC OF THE SOLVER
SYMBOLIC EXECUTION
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THE SYMBOLIC EXECUTION TREE
SYMBOLIC EXECUTION
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SOUNDNESS / COMPLETENESS
SYMBOLIC EXECUTION



WRAP-UP

SYMBOLIC EXECUTION
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A simple, elegant idea
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