
EXERCISE #29

1

FUZZING REVIEW

Write your name and answer the following on a piece of paper

In fuzzing, it is easy to generate additional test cases for an analysis target. What are

some of the strategies for prioritizing which test case to run next?

ADMINISTRIVIA
AND
ANNOUNCEMENTS

SYMBOLIC EXECUTION
EECS 677: Software Security Evaluation

Drew Davidson

WHERE WE’RE AT

DYNAMIC ANALYSIS

4

Generating test cases

5

PREVIOUSLY: FUZZING
OUTLINE / OVERVIEW

GENERATING RANDOM TEST CASES

Surprisingly effective in practice

The random “fuzz” of white noise

Main challenge is exploring “new” behavior

6

RESEARCH DIRECTION: “GUNKING”
FUZZING

FUZZING AS ADVERSARIAL RECON

Fuzzing is so good at finding bugs that even the bad guys do it

PERHAPS A PROGRAM SHOULD DEPLOY ANTI-FUZZING TECH

What would that look like?

7

THIS LECTURE: SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

A METHODICAL APPROACH TO “ABSTRACT” EXECUTION

8

RECALL: TEST CASE GENERATION
SYMBOLIC EXECUTION

9

THE PROBLEM OF COVERAGE
SYMBOLIC EXECUTION

10

PREDICATES GET IN THE WAY!
SYMBOLIC EXECUTION

11

ELIMINATING INFEASIBLE PATHS
SYMBOLIC EXECUTION

12

THE MAGIC OF THE SOLVER
SYMBOLIC EXECUTION

13

THE SYMBOLIC EXECUTION TREE
SYMBOLIC EXECUTION

14

SOUNDNESS / COMPLETENESS
SYMBOLIC EXECUTION

WRAP-UP

SYMBOLIC EXECUTION

15

A simple, elegant idea

	Slide 1: Exercise #29
	Slide 2: Administrivia and Announcements
	Slide 3: Symbolic Execution
	Slide 4: Where We’re At
	Slide 5: Previously: Fuzzing
	Slide 6: Research Direction: “Gunking”
	Slide 7: This Lecture: Symbolic Execution
	Slide 8: Recall: Test case generation
	Slide 9: The problem of coverage
	Slide 10: Predicates get in the way!
	Slide 11: Eliminating Infeasible Paths
	Slide 12: The magic of the solver
	Slide 13: The symbolic execution Tree
	Slide 14: Soundness / Completeness
	Slide 15: Wrap-up

